K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

Ta có f(x) đạt giá trị lớn nhất khi \(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất.

Xét \(\frac{1}{f\left(x\right)}=\frac{x^2+2014x+1}{x}=x+\frac{1}{x}+2014\ge2\sqrt{x.\frac{1}{x}}+2014=2016\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x>0\\x=\frac{1}{x}\end{cases}}\Leftrightarrow x=1\)

 \(Min\)\(\frac{1}{f\left(x\right)}=2016\Leftrightarrow x=1\)

Vậy \(Max\)\(f\left(x\right)=\frac{1}{2016}\Leftrightarrow x=1\)

9 tháng 8 2016

Ta có : f(x) đạt giá trị lớn nhất <=> \(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất

Xét : \(\frac{1}{f\left(x\right)}=\frac{x^2-2x+2016}{x^2}=\frac{2016}{x^2}-\frac{2}{x}+1\)

Đặt \(t=\frac{1}{x}\Rightarrow\frac{1}{f\left(x\right)}=2016t^2-2t+1=2016\left(t-\frac{1}{2016}\right)^2+\frac{2015}{2016}\ge\frac{2015}{2016}\)

 \(\frac{1}{f\left(x\right)}\) đạt giá trị nhỏ nhất bằng \(\frac{2015}{2016}\) 

Suy ra f(x) đạt giá trị lớn nhất bằng \(\frac{2016}{2015}\)

Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{1}{2016}\Leftrightarrow x=2016\)

28 tháng 2 2021

a,nghịch biến x<0

`<=>4m+2<0`

`<=>4m< -2`

`<=>m< -1/2`

`b,(4m+2)x^2<=0`

Mà `x^2>=0`

`<=>4m+2<0`

`<=>4m<-2`

`<=>m<-1/2`

a) Để hàm số nghịch biến với mọi x<0 thì 4m+2>0

\(\Leftrightarrow4m>-2\)

hay \(m>-\dfrac{1}{2}\)

Vậy: Để hàm số nghịch biến với mọi x<0 thì \(m>-\dfrac{1}{2}\)

b) Để hàm số đạt giá trị lớn nhất là 0 thì 4m+2<0

hay \(m< -\dfrac{1}{2}\)

5 tháng 5 2016

Đề bị sai?

28 tháng 6 2017

Vẽ hình:

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.

Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị bào của x để hàm số đạt giá trị nhỏ nhất.

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

NV
23 tháng 2 2021

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)