K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

7 tháng 2 2018

\(A=\frac{3\left|x\right|+2}{4\left|x\right|-5}=\frac{3}{4}\cdot\frac{4\left(3\left|x\right|+2\right)}{3\left(4\left|x\right|-5\right)}=\frac{3}{4}\cdot\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{3}{4}\left(1+\frac{23}{12\left|x\right|-15}\right)\)

A lớn nhất khi \(\frac{23}{12\left|x\right|-15}\) lớn nhất => 12|x| - 15 nhỏ nhất và 12|x| - 15 > 0 => x = 2

Vậy \(A_{Max}=\frac{3}{4}\left(1+\frac{23}{9}\right)=\frac{8}{3}\) khi x = 2

11 tháng 8 2018

Đặt \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\)

\(\Rightarrow\frac{4}{3}C=\frac{4}{3}.\left(\frac{3\left|x\right|+2}{4\left|x\right|-5}\right)=\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{12\left|x\right|-15+23}{12\left|x\right|-15}\)

                                                                \(=1+\frac{23}{12\left|x\right|-15}\)

Để C đạt GTLN \(\Leftrightarrow\left(12\left|x\right|-15\right)_{min}\)

Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow12\left|x\right|\ge0\Rightarrow12\left|x\right|-15\ge-15\)

Dấu "=" xảy ra <=> \(\left|x\right|=0\Leftrightarrow x=0\)

Vậy ...

5 tháng 5 2019

Do \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+3\ge3\)

\(\Rightarrow\frac{4}{3+\left(x+1\right)^2}\le\frac{4}{3}\)

Vậy \(Q_{max}=\frac{4}{3}\Leftrightarrow x=-1\)

5 tháng 5 2019

Do \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy \(A_{max}=\frac{5}{3}\Leftrightarrow x=2\)

17 tháng 6 2016

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull