K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Ta có :

\(M=\frac{15}{\left(2x+\frac{1}{3}\right)^2+5}\)

Để M lớn nhất thì :

\(\left(2x+\frac{1}{3}\right)^2+5\) nhỏ nhất

Với mọi x ta có :

\(\left(2x+\frac{1}{3}\right)^2\ge0\)

\(\Leftrightarrow\left(2x+\frac{1}{3}\right)^2+5\ge5\)

Dấu "=" xảy ra khi :

\(\left(2x+\frac{1}{3}\right)^2=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy \(M=\frac{15}{\left(2.\frac{-1}{6}+\frac{1}{3}\right)+5}=\frac{15}{5}=3\)

Vạy ....

3 tháng 7 2018

Cách khác

Ta có: \(\left(2x+\frac{1}{3}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^2+5\ge5\)

\(\Rightarrow\frac{1}{\left(2x+\frac{1}{3}\right)^2+5}\le\frac{1}{5}\Rightarrow\frac{15}{\left(2x+\frac{1}{3}\right)^2+5}\le\frac{15}{5}=3\)

Dấu "=" xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=\frac{-1}{6}\)

Vậy Mmax = 3 khi x = -1/6 

4 tháng 4 2020

GTNN:

Ta có M= |x-2013|+|x-2|= |2013-x|+|x-2| >= |x-2+2013-x|=2011

(vì giá trị tuyệt đối của một tổng luôn nhỏ hơn hoặc bằng tổng của các giá trị tuyệt đối)

Nên min M =2011. Dấu ''='' xảy ra khi và chỉ khi (2013-x)(x-2) >= 0

<=> 2<=x<=2013.

\(C=\dfrac{5-x^2}{x^2+3}=\dfrac{-x^2-3+8}{x^2+3}=-1+\dfrac{8}{x^2+3}\)

Ta có: \(x^2>=0\forall x\)

=>\(x^2+3>=3\forall x\)

=>\(\dfrac{8}{x^2+3}< =\dfrac{8}{3}\forall x\)

=>\(\dfrac{8}{x^2+3}-1< =\dfrac{8}{3}-1=\dfrac{5}{3}\forall x\)

=>\(C< =\dfrac{5}{3}\forall x\)

Dấu '=' xảy ra khi x2=0

=>x=0

Vậy: \(C_{Max}=\dfrac{5}{3}\) khi x=0

24 tháng 9 2023

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

23 tháng 9 2023

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

16 tháng 9 2023

\(D=\dfrac{15}{3\left|2x+1\right|+5}\)

Ta có:

\(\left\{{}\begin{matrix}15>0\\3\left|2x+1\right|\ge5\forall x\end{matrix}\right.\)Nên:

\(\Rightarrow D=\dfrac{15}{3\left|2x-1\right|+5}\le3\left(=\dfrac{15}{5}\right)\forall x\) 

Dấu "=" xảy ra:

\(\dfrac{15}{3\left|2x+1\right|+5}=3\)

\(\Rightarrow3\left|2x+1\right|+5=5\)

\(\Rightarrow3\left|2x+1\right|=0\)

\(\Rightarrow\left|2x+1\right|=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy: \(D_{max}=3\) khi \(x=-\dfrac{1}{2}\)

16 tháng 9 2023

D = \(\dfrac{15}{3.\left|2x-1\right|+5}\)  vì |2\(x\) - 1| ≥ 0 ∀ \(x\) ⇒3.|2\(x-1\)| + 5 ≥ 5 ∀ \(x\)

⇒D = \(\dfrac{15}{3.\left|2x-1\right|+5}\) ≤ \(\dfrac{15}{5}\) = 3 dấu bằng xảy ra khi 2\(x\) - 1 =0 ⇒ \(x=\dfrac{1}{2}\)

Kết luận Dmin = 3 ⇔ \(x\) = \(\dfrac{1}{2}\)

 

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2