Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này bạn áp dụng hằng đẳng thức đáng nhớ số 1
(x-y)^2+(x^3-y^2)^2+6xy=36+(y^2-x^3)^2
(x^2 + y^2 - 2xy) + (x^6 + y^4 - 2x^3*y^2) + 6xy = 36 + (y^4 + x^6 - 2x^3*y^2) (Vì nó bằng nên lược bớt)
x^2 + y^2 - 2xy + 6xy = 36
x^2 + y^2 + 4xy = 36
x^2 + y^2 + 2xy + 2xy = 36
(x + y)^2 + 2xy = 36
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)
Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
3x+2y=5 => y = (5-3x)/2
E=xy = x(5-3x)/2
=> 2E=5x-3x2 = -3(x2-5x/3)
=> \(2E=-3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)\)
=> \(2E=\frac{25}{12}-3\left(x-\frac{5}{6}\right)^2\)
Nhận thấy: \(\left(x-\frac{5}{6}\right)^2\ge0\) Với mọi x
=> Giá trị lớn nhất của 2E là 25/12, đạt được khi x=5/6
=> \(E_{min}=\frac{25}{24}\) đạt được khi x=5/6
thỏa mãn gì vậy bạn