Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(3y+7\right)^2\ge0\Rightarrow\left(3y+7\right)^2+5\ge5\)
=>\(G=\frac{2}{\left(3y+7\right)^2+5}\le\frac{2}{5}\)
Dấu "=" xảy ra khi: 3y+7=0 =>y=-7/3
Vậy GTLN của G là 2/5 tại y=-7/3
:))
a: \(A=2018-\left|10-x\right|\le2018\)
Dấu '=' xảy ra khi x=10
\(B=-\left(x+2\right)^2+1999\le1999\)
Dấu '=' xảy ra khi x=-2
b: \(A=\left(2x-8\right)^2+3>=3\)
Dấu '=' xảy ra khi x=4
\(B=\left|x^2-25\right|-2017>=-2017\)
Dấu '=' xảy ra khi x=5 hoặc x=-5
Bài 8:
a) A = 2020 – |x + 3|
Có: |x + 3| ≥ 0
=> A ≤ 2020
Dấu ''='' xảy ra khi: |x + 3| = 0
=> x + 3 = 0
=> x = 0 - 3 = -3
Vậy: A sẽ đạt giá trị lớn nhất khi A = 2020 tại x = -3
b/ B = |x – 7| + 68
Có: |x – 7| ≥ 0
=> B ≥ 68
Dấu ''='' xảy ra khi: |x – 7| = 0
=> x - 7 = 0
=> x = 0 + 7 = 7
Vậy:.....
Bài 8
a , A = 2020 - | x + 3 |
Ta có \(\left|x+3\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)
\(\Leftrightarrow2020-\left|x+3\right|\le2020\forall x\)
\(\Leftrightarrow A\le2020\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy MaxA = 2020 \(\Leftrightarrow x=-3\)
b) B = | x - 7 | + 68
Ta có \(\left|x-7\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-7\right|+68\ge68\forall x\)
\(\Leftrightarrow B\ge68\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x-7\right|=0\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)
Vậy Min B = 68 \(\Leftrightarrow x=7\)
~ Học tốt
# Chiyuki Fujito
" Cho hỏi 𝑆 = (6𝑚2 .......)
thì là 6 . m . 2 hay là \(6m^2\) và mấy cái kia nx"
a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)
Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)
Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5
b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)
Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3
\(B=-\left|x-5\right|+3\le3\)
Dấu "=" xảy ra khi
\(-\left|x-5\right|\Rightarrow x=5\)
Vậy \(MAX_B=3\) khi \(x=5\)
Quên ko cho đoạn
\(-\left|x-5\right|=0\) ( chữa lại Nha )
TH1 : Nếu (x - 5) + 4 < 0 ⇒A = \(\frac{3}{\left(x-5\right)+4}< 0\) (1)
TH2 : Nếu (x - 5) + 4 > 0 ⇒A = \(\frac{3}{\left(x-5\right)+4}>0\)
Vì phân số \(\frac{3}{\left(x-5\right)+4}\) có tử là 3 > 0 không đổi nên để A đạt GTLN thì
(x - 5) + 4 là số nguyên dương nhỏ nhất
⇒ (x - 5) + 4 = 1 ⇒ x - 5 = 1 - 4 ⇒ x - 5 = -3
⇒ x = -3 + 5 ⇒ x = 2
Với x = 2 thì ta có A = \(\frac{3}{\left(x-5\right)+4}=\frac{3}{\left(2-5\right)+4}=\frac{3}{1}=3\) (2)
Từ (1) và (2) ⇒ A đạt giá trị lớn nhất là 3 ⇔ x = 2