Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt \(t=x^2,t\ge0\)
\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)
=> MIN = -2 khi x = 0
2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)
Vì \(x^2+2\ge2>0\) => Vô nghiệm
Vậy x+1 = 0 => x = -1
3. Kết quả là 10
4. Ko rõ đề
Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi
\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)
Thay n = 2 vào \(n+2\le2n\), ta có :
\(2+2\le2\times2\)(t/mãn)
Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
3x2xn + 2mxyym - 3 = 3x2 + n + 2m + 1.y1 + m - 3 = 3x3 + 2m + n.ym - 2
12(xy)8x7y4 - m = 12x8y8x7y4 - m = 12x8 + 7y8 + 4 - m = 12x15y12 - m
2 đơn thức thu gọn trên đồng dạng với nhau
=> ym - 2 = y12 - m => m - 2 = 12 - m => m = 14 - m => 14 = 2m => m = 7
mà x3 + 2m + n = x15
=> 3 + 2m + n = 15 => n = 15 - 3 - 2m = 12 - 2.7 = 12 - 14 = -2
a)x3 + 3x2 + 3x
=x3 + 3x2 + 3x+1-1
=(x+1)3-1.Với x=99
=>A=(99+1)3-1=1003-1
=1 000 000 -1 = 999 999
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
a: \(\left(3y+1\right)\left(2y-3\right)-6y\left(y+2\right)=16\)
=>\(6y^2-9y+2y-3-6y^2-12y=16\)
=>-19y=19
=>y=-1
b: Để A và B đều chia hết cho C thì \(\left\{{}\begin{matrix}12x^{2n}y^{12-3n}⋮3x^3y^4\\3x^3y^7⋮3x^3y^4\left(đúng\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n>=3\\12-3n>=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n>=1,5\\-3n>=-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n>=1,5\\n< =\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow n=2\)