K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi 

\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)

Thay n = 2 vào \(n+2\le2n\), ta có : 

\(2+2\le2\times2\)(t/mãn) 

Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B 

17 tháng 1 2017

Gớm nhỉ: bái phục

21 tháng 12 2016

1/ \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x^2-y^2\right)-4y^2+10\)

\(=x^2-2xy+y^2+x^2+2xy+y^2-2x^2+2y^2-4y^2+10\)

\(=10\)

2/ \(5a^2+b^2=6ab\Leftrightarrow\left(5a^2-5ab\right)+\left(b^2-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(5a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\5a=b\end{cases}}\)

Với a = b thì

\(M=\frac{a-b}{a+b}=\frac{a-a}{a+a}=0\)

Với 5a = b thì

\(M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=\frac{-4}{6}=\frac{-2}{3}\)

21 tháng 12 2016

1.(x-y)2+(x+y)2-2(x2-y2)-4y2+10

=x2-2xy+y2+x2+2xy+y2-2x2+2y2-4y2+10

=x2+x-2x2-2xy+2xy+y2+y2+2y2-4y2+10

=10

=>dpcm

2.Ta co : 5a2+b2=6ab

5a2+b2-6ab=0

5a2+b2-5ab-ab=0

5a2-5ab+b2-ab=0

5a(a-b)+b(b-a)=0

5a(a-b)-b(a-b)=0

(a-b)(5a-b)=0

Ta lai co : a-b=0 \(\Rightarrow\)a=b

Va : 5a-b=0 \(\Rightarrow\)5a=b

Thay : a=b vao M

\(\Rightarrow M=\frac{a-b}{a+b}=\frac{b-b}{b+b}=\frac{0}{2b}=0\)

Thay : 5a=b vao M

\(\Rightarrow M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=-\frac{4a}{6a}=-\frac{4}{6}=-\frac{2}{3}\)

6 tháng 10 2020

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)

=> đpcm

b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)

\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)

\(B=\frac{2}{27}\)

=> đpcm

c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)

\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)

\(C=0\)

=> đpcm

12 tháng 7 2018

\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)

\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)

\(\Rightarrow B=0\)

\(\Rightarrow B\)ko phụ thuộc vào g/t của biến 

\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)

\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)

\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)

\(\Rightarrow C=26\)

Vậy \(C\)ko phụ thuộc vào giá trị của biến