K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

l2x-3l=l1-xl

\(\Leftrightarrow\)3x=4   ;     x=2

\(\Leftrightarrow\)x=3/4   ;x=2   

24 tháng 9 2023

\(\left|2x-3\right|=\left|1-x\right|\)

TH1: \(2x-3=1-x\)

\(\Rightarrow2x+x=1+3\)

\(\Rightarrow3x=4\)

\(\Rightarrow x=\dfrac{4}{3}\)

TH2: \(2x-3=x-1\)

\(\Rightarrow2x-x=-1+3\)

\(\Rightarrow x=2\)

29 tháng 8 2017

oh yeah 

ko làm dc hihi

17 tháng 10 2019

a) \(\left|2x-3\right|=\left|1-x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=1-x\\2x-3=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)

b) \(x^2-4x\le5\)

\(\Leftrightarrow x^2-4x-5\le0\)

\(\Leftrightarrow x^2-5x+x-5\le0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)\le0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\le0\)

Đến đây dễ r

c) \(2x\left(2x-1\right)\le2x-1\)

\(\Leftrightarrow2x\left(2x-1\right)-\left(2x-1\right)\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\le0\)

Mà \(\left(2x-1\right)^2\ge0\)nên 2x - 1=0

22 tháng 11 2023

a: |2x-3|=|1-x|

=>\(\left[{}\begin{matrix}2x-3=1-x\\2x-3=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+x=3+1\\2x-x=-1+3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=4\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

b: \(x^2-4x< =5\)

=>\(x^2-4x-5< =0\)

=>\(x^2-5x+x-5< =0\)

=>\(x\left(x-5\right)+\left(x-5\right)< =0\)

=>\(\left(x-5\right)\left(x+1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}x-5>=0\\x+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=5\\x< =-1\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-5< =0\\x+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =5\\x>=-1\end{matrix}\right.\)

=>-1<=x<=5

c: 2x(2x-1)<=2x-1

=>\(\left(2x-1\right)\cdot2x-\left(2x-1\right)< =0\)

=>\(\left(2x-1\right)^2< =0\)

mà \(\left(2x-1\right)^2>=0\forall x\)

nên \(\left(2x-1\right)^2=0\)

=>2x-1=0

=>2x=1

=>\(x=\dfrac{1}{2}\)

22 tháng 6 2018

Thêm đấu ngoặc vô đi 

22 tháng 6 2018

với x;y>=0 ta có:

\(A^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2=2x+1+2y+1+2\sqrt{\left(2x+1\right)\left(2y+1\right)}\)

\(=2\left(x+y\right)+2+\sqrt{4xy+2x+2y+1}=2\left(x+y\right)+2+\sqrt{4xy+2\left(x+y\right)+1}\)

\(2=2\left(x^2+y^2\right)=\left(1+1\right)\left(x^2+y^2\right)>=\left(x+y\right)^2\Rightarrow x+y< =\sqrt{2}\)(bđt bunhiacopxki)

\(2xy< =x^2+y^2=1\Rightarrow2\cdot2xy=4xy< =2\cdot1=2\)

\(\Rightarrow A^2=2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}< =2\sqrt{2}+2+2\sqrt{2+2\sqrt{2}+1}\)

\(=2\sqrt{2}+2+2\sqrt{\left(\sqrt{2}+1\right)^2}=2\sqrt{2}+2+2\left(\sqrt{2}+1\right)4\sqrt{2}+4\)

\(\Rightarrow A< =\sqrt{4\sqrt{2}+4}\)

dấu = xảy ra khi x=y=\(\sqrt{\frac{1}{2}}\)

vậy max A là \(\sqrt{4\sqrt{2}+4}\)khi \(x=y=\sqrt{\frac{1}{2}}\)

22 tháng 11 2021

\(a,ĐK\left(A\right):x\ne-\dfrac{3}{2};ĐK\left(B\right):x\ne-1;x\ne-3\\ b,A=\dfrac{-1+1}{2\left(-1\right)+3}=0\\ B=\dfrac{2\left(-\dfrac{2}{3}\right)+3}{1-\dfrac{2}{3}}+\dfrac{2-\dfrac{2}{3}}{3-\dfrac{2}{3}}=\dfrac{3-\dfrac{4}{3}}{\dfrac{1}{3}}+\dfrac{4}{3}:\dfrac{7}{3}=\dfrac{5}{3}:\dfrac{1}{3}+\dfrac{4}{7}=5+\dfrac{4}{7}=\dfrac{39}{7}\)

15 tháng 8 2023

\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)

Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)

x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)