K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

\(D=\frac{x^2-2x+2014}{x^2}\)

\(D=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2014}{x^2}\)

\(D=1-\frac{2}{x}+\frac{2014}{x^2}\)

\(D=2014\cdot\frac{1}{x^2}-2\cdot\frac{1}{x}+1\)

Đặt \(\frac{1}{x}=a\)

\(D=2014a^2-2a+1\)

\(D=2014\left(a^2-a\cdot\frac{1}{1007}+\frac{1}{2014}\right)\)

\(D=2014\left(a^2-2\cdot a\cdot\frac{1}{2014}+\frac{1}{2014^2}+\frac{2013}{2014^2}\right)\)

\(D=2014\left[\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014^2}\right]\)

\(D=2014\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2014}\Leftrightarrow\frac{1}{x}=\frac{1}{2014}\Leftrightarrow x=2014\)

Vậy....

16 tháng 11 2016

\(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)

\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)

\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)

Vậy \(Max_P=\frac{3}{4}\Leftrightarrow x=1\)

22 tháng 5 2016

a(x+a+1)=\(a^3\)+2x-2

ax+\(a^2\)+a=\(a^3\)+2x-2

ax-2x=\(a^3\)-\(a^2\)-a-2

x(a-2)=\(a^3\)-\(a^2\)-a-2

x=\(\frac{a^3-a^2-a-2}{a-2}\)=\(a^2\)+a+1=\(\left(a+\frac{1}{2}\right)^2\)+\(\frac{3}{4}\)

Ta có \(\left(a+\frac{1}{2}\right)^2\)\(\ge\)

=> x=\(\left(a+\frac{1}{2}\right)^2\)+\(\frac{3}{4}\)\(\ge\)\(\frac{3}{4}\)

Vậy với a\(\ne\)2 thì nghiệm đạt giá trị nhỏ nhất là \(\frac{3}{4}\) dấu = xảy ra khi a+\(\frac{1}{2}\)=0=>a=-\(\frac{1}{2}\)

20 tháng 5 2016

the sao lai co x.........neu x ......la so lon 1000000000000   .....thj sao

21 tháng 5 2016

a(x + a + 1) = a3 + 2x - 2

<=> ax + a2 + a = a3 + 2x - 2

<=> ax - 2x = a3 - a2 - a - 2

<=> (a - 2).x = (a - 2).(a2 + a + 1) 

<=> x = a2 + a + 1 (Vì a khác 2 nên a - 2 khác 0)

<=> x = a2 + 2.a.1/2 + 1/4 + 3/4

<=> x = (a + 1/2)2 + 3/4 \(\ge\)3/4

Dấu "=" xảy ra <=> a + 1/2 = 0 <=> a = -1/2

Vậy a = -1/2 thì x có GTNN.

21 tháng 5 2016

\(a\left(x+a+1\right)=a^3+2x-2\) 2

\(\Leftrightarrow ax+a^2+a=a^3+2x-2\)

\(\Leftrightarrow ax-2x=a^3-a^2-a-2\)

\(\Leftrightarrow\left(a-2\right)\times x=\left(a-2\right)\times\left(a^2+a+1\right)\)

\(\Leftrightarrow x=a^2+a+1\). Vì \(a\ne2\)nên \(a-2\ne0\)

\(\Leftrightarrow x=a^2+2\times a\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow x=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu \("="\) xảy ra 

\(\Leftrightarrow a+\frac{1}{2}=0\)

\(\Leftrightarrow a=-\frac{1}{2}\)

Vậy \(a=-\frac{1}{2}\)thì \(x\)có \(GTNN\)

20 tháng 5 2016

Dựa vào đây mà làm 2) Delta" = (-m)^2 - (2 - m) = m^2 + m - 2 = (m^2 - 1) + (m - 1) = (m - 1)(m + 1) + (m - 1) 
<=> (m - 1)(m + 2) 
Để phương trình có nghiệm thì : Delta" >= 0 
<=> (m - 1)(m + 2) >= 0 
<=> m - 1 >= 0 ; m + 2 >= 0 hoặc m - 1 < 0 ; m + 2 < 0 
<=> m >= 1 ; m >= - 2 hoặc m < 1 ; m < - 2 
<=> m >= 1 hoặc m < - 2 (1) 
Đặt A = x1^2 + x2^2 = (x1^2 + 2x1.x2 + x2^2) - 2x1.x2 = (x1 + x2)^2 - 2x1.x2 
= (2m)^2 - 2(2 - m) = (2m)^2 + 2m - 4 = (2m)^2 + 2.2m.1/2 + 1/4 - 17/4 
= (2m + 1/2)^2 - 17/4 >= - 17/4 
Dấu "=" khi 2m + 1/2 = 0 <=> m = - 1/4 không thỏa mãn điều kiện (1) 
=> Không có giá trị m nào thỏa mãn yêu cầu của đề. 

3) Theo mình đề phải là : Định m để pt có 2 nghiệm x1,x2 và x1^2 + x2^2 đạt Giá trị nhỏ nhất : 
x^2 + 2 (m -3)x + m-13 = 0 

Delta" = (m - 3)^2 - (m - 13) = m^2 - 7m + 22 = m^2 - 2.m.7/2 + 49/4 + 39/4 
= (m - 7/2)^2 + 39/4 > 0 với mọi m 
Đặt A = x1^2 + x2^2 = (x1 + x2)^2 - 2x1.x2 = (3 - m)^2 - 2(m - 13) 
= m^2 - 8m + 35 = m^2 - 2.4.m + 16 + 19 = (m - 4)^2 + 19 >= 19 
Dấu "=" khi m - 4 = 0 <=> m = 4 
Vậy min A = 19 khi m = 4 

4) (m+1)x^2 + 2(m-3)x + m+3 = 0 (1) 
Nếu m + 1 = 0 <=> m = - 1 
(1) <=> 2(-1 - 3)x - 1 + 3 = 0 
<=> - 8x = - 2 
<=> x = 1/4 > 0 (không thỏa mãn) 
Nếu m + 1 # 0 <=> m # - 1 
Delta" = (m - 3)^2 - (m + 1)(m + 3) = m^2 - 6m + 9 - m^2 - 4m - 3 = - 10m + 6 
Để phương trình có nghiệm : Delta " >= 0 <=> - 10m + 6 >= 0 <=> m =< 3/5 (1) 
Để phương trình có đúng 1 nghiệm âm : x1.x2 < 0 <=> (m + 3)/(m + 1) < 0 
<=> m + 3 > 0 ; m + 1 < 0 hoặc m + 3 < 0 ; m + 1 > 0 
<=> m > - 3 ; m < - 1 hoặc m < - 3 ; m > - 1 (vô nghiêm) 
<=> - 3 < m < - 1 (thỏa điều kiện (1)) 

5) (m+2)cănx - 2(m-1)cănx + m-2 = 0 (1) 
<=> (m + 2 - 2m + 2).cănx + m - 2 = 0 
<=> (- m + 4).cănx = 2 - m 
<=> cănx = (2 - m)/(4 - m) 
Để phương trình có nghiệm thì : 
4 - m # 0 và (2 - m)/(4 - m) >= 0 
<=> m # 4 
2 - m >= 0 ; 4 - m > 0 hoặc 2 - m < 0 ; 4 - m < 0 
<=> m # 4 
m =< 2 ; m < 4 hoặc m > 2 ; m > 4 
<=> m # 4 
m =< 2 hoặc m > 4 

6) Delta" = (m - 1)^2 - (m^2 - 3m + 4) = m - 3 
Để phương trình có nghiệm thì : Delta >= 0 <=> m - 3 >= 0 <=> m >= 3 
căn x1 + căn x2 = 2.căn2 
<=> x1 + 2.căn(x1.x2) + x2 = 8 (bình phương 2 vế) 
<=> (x1 + x2) + 2.căn(x1.x2) = 8 
<=> 2(m - 1) + 2.căn(m^2 - 3m + 4) = 8 
<=> m - 1 + căn(m^2 - 3m + 4) = 4 
<=> căn(m^2 - 3m + 4) = 5 - m 
<=> m^2 - 3m + 4 = (5 - m)^2 
<=> m^2 - 3m + 4 = m^2 - 10m + 25 
<=> 7m = 21 
<=> m = 3

20 tháng 5 2016

Thiên Ngoại Phi Tiên đừng làm thì thôi đừng có đăng xàm xàm rồi kiếm điểm hỏi đáp 

12 tháng 8 2016

\(a\left(x+a+1\right)=a^3+2x-2\)

\(\Leftrightarrow ax+a^2+a=a^3+2x-2\)

\(\Leftrightarrow ax-2x=a^3-a^2-a-2\)

\(\Leftrightarrow\left(a-2\right)\times x=\left(a-2\right)\times\left(a^2+a+1\right)\)

\(\Leftrightarrow x=a^2+a+1\) . Vì \(a\ne2\) nên \(x-2\ne0\)

\(\Leftrightarrow x=a^2+2\times a\times\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow x=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra khi :

 \(\Leftrightarrow a+\frac{1}{2}=0\)

\(\Leftrightarrow a=-\frac{1}{2}\)

Vậy \(a=-\frac{1}{2}\) thì x có GTNN

12 tháng 8 2016

Câu hỏi của Lê Khánh Linh Napie - Toán lớp 8 - Học toán với OnlineMath

31 tháng 3 2019

\(D=\frac{x^{2}-2x+2018}{x^{2}}\)

\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)

\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)

Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN

Mà \((x-1)^{2} \geq 0\) . Nên:

\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1

Thay x=1 vào D

GTNN D=2017

31 tháng 3 2019

xin lỗi mình lỡ tìm max rồi

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)