Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
△'=(-2)2-1(m-1)
=4-m+1
=5-m
Để PT có 2 no pb thì △'>0
⇒5-m>0
⇒m<5
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
mà: \(x^2_1x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)
⇔\(\left(x_1x_2\right)\left(x_1+x_2\right)-2\left(x_1+x_2\right)=0\)
⇔\(\left(m-1\right)4-2\cdot4=0\)
⇔\(4m-4-8=0\)
⇔4m-12=0
⇔4m=12
⇔m=3
Vậy ...
Lời giải:
Ta thấy:
\(\Delta'=(m+2)^2-(m+1)=m^2+3m+3=(m+\frac{3}{2})^2+\frac{3}{4}>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có 2 nghiệm phân biệt với mọi $m$
Với $x_1,x_2$ là nghiệm của pt, áp dụng định lý Vi-et:
\(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m+1\end{matrix}\right.\)
Khi đó:
\(x_1(1-2x_2)+x_2(1-2x_1)=m^2\)
\(\Leftrightarrow (x_1+x_2)-4x_1x_2=m^2\)
\(\Leftrightarrow 2(m+2)-4(m+1)=m^2\)
\(\Leftrightarrow m^2+2m=0\Leftrightarrow m(m+2)=0\Rightarrow \left[\begin{matrix} m=0\\ m=-2\end{matrix}\right.\)
\(\Delta'=\left(m+1\right)^2-m^2-4m-3=-2m-2\ge0\Rightarrow m\le-1\)
Khi đó theo Viet pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
\(2\left(x_1+x_2\right)-x_1x_2+7=0\)
\(\Leftrightarrow-4m-4-m^2-4m-3+7=0\)
\(\Leftrightarrow m^2+8m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-8\end{matrix}\right.\)
Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3
Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)
Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)
\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)
\(\Leftrightarrow m^2-10-15=0\)
\(\Delta=b^2-4ac=100+60=160\)
\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)
Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài
\(a=\frac{1}{2};b=-2;c=m-1\)
\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)
\(\Delta=4-2\left(m-1\right)\)
\(\Delta=4-2m+2\)
\(\Delta=6-2m\)
để pt có 2 nghiệm phân biệt thì \(6-2m>0\)
\(< =>m< 3\)
áp dụng vi - ét
\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)
\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)
\(\left(2m-2\right)\left(6-2m\right)+48=0\)
\(12m-12-4m^2+4m+48=0\)
\(-4m^2+16m+36=0\)
\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)
\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)
\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)
vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+m\right)=m^2+2m+1-m^2-m\)
\(=m+1\)
pt có nghiệm x1,x2 \(< =>m+1\ge0< =>m\ge-1\)
vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=m^2+m\end{matrix}\right.\)
a,\(=>2m+2=m^2+m< =>m^2-m-2=0\)
\(a-b+c=0=>\left[{}\begin{matrix}m1=-1\\m2=2\end{matrix}\right.\left(tm\right)\)
b,\(< =>3\left(2m+2\right)-2\left(m^2+m\right)-1=0\)
\(< =>-2m^2+4m+5=0\)
\(ac< 0\) pt có 2 nghiệm pbiet \(=>\left[{}\begin{matrix}m1=...\\m2=...\end{matrix}\right.\) thay số vào tính m1,m2 đối chiếu đk
Câu a:
Đặt \(x^2=t\left(t>0\right)\)phương trinh \(x^4+\left(1-m\right)x^2+2m-2=0\left(1\right)\)trở thành \(t^2+\left(1-m\right)t+2m+2=0\left(2\right)\)
Để (1) có 4 nghiệm phân biệt thì phương trình (2) phải có 2 nghiệm phân biệt tức
\(\Delta>0\Leftrightarrow\left(1-m\right)^2-4\left(2m-2\right)>0\)
\(m^2-10m+9>0\Leftrightarrow\left(m-1\right)\left(m-9\right)>0\Leftrightarrow\orbr{\begin{cases}m>9\\m< 1\end{cases}}\)
Câu b:
phương trình (2) có hai nghiệm phân biệt \(t_1,t_2\)tương ứng phương trình (1) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\)thỏa mãn \(\hept{\begin{cases}t_1=-x_1=x_3\\t_2=-x_2=x_4\end{cases}}\)(theo tính chất đối xứng nghiệm của hàm trùng phương bậc 4)
theo viet ta có :\(\hept{\begin{cases}t_1+t_2=1-m\\t_1t_2=2m-2\end{cases}}\)
Xét \(\frac{x_1x_2x_3}{2x_4}+\frac{x_1x_2x_4}{2x_3}+\frac{x_1x_3x_4}{2x_2}+\frac{x_2x_3x_4}{2x_1}=2013\)
\(VT=\frac{\left(x_1x_2x_3\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_1x_2x_4\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_1x_3x_4\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_4x_2x_3\right)^2}{2x_1x_2x_3x_4}\)
\(=\frac{\left(x_1x_2\right)^2\left(x^2_3+x^2_4\right)}{2x_1x_2x_3x_4}+\frac{\left(x_4x_3\right)^2\left(x_1^2+x_2^2\right)}{2x_1x_2x_3x_4}\)
thay biến x bằng biến t ta có
\(VT=\frac{\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}+\frac{\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}=\frac{2\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}\)
\(=\left(t_1t_2\right)\left(t_1^2+t^2_2\right)=\left(t_1^2+t^2_2-2t_1t_2\right)t_1t_2\)
thế m theo viet vào ta có :
\(\left(2m-2\right)\left(\left(1-m\right)^2-2\left(2m-2\right)\right)=2013\)
\(\Leftrightarrow2m^3-8m^2+17m-2023=0\)
Đến đây giải dễ rùi bạn gải nốt tìm m nhé
x2-2(m+1)x+m=0
Giải
\(\Delta=b^2-4ac\)
= (-2m-2)2-4.1.m
= 4m2+8m+4-4m
= 4m2+4m+1+3
= (2m+1)2+3
Do (2m+1)2 \(\ge0\) nên (2m+1)2+3 luôn luôn lớn hơn 0 với mọi m
\(\Rightarrow\) Phương trình có hai nghiệm phân biệt.
Ta có: \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{3}{x_1x_2}\)
\(\Leftrightarrow\frac{x_1\left(2x_1-1\right)}{x_1x_2}+\frac{x_2\left(2x_2-1\right)}{x_1x_2}=\frac{\left(x_1x_2\right)^2}{x_1x_2}+\frac{3}{x_1x_2}\)
\(\Leftrightarrow2x_1^2-x_1+2x_2^2-x_2=\left(x_1x_2\right)^2+3\)
\(\Leftrightarrow2\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+3\)
Mà \(\left(x_1^2+x_2^2\right)=S^2-2P\) ; \(\left(x_1+x_2\right)=S\) ; \(\left(x_1x_2\right)^2=P^2\)
\(\Rightarrow2\left(S^2-2P\right)-S-P^2-3=0\)
\(\Leftrightarrow2S^2-4P-S-P^2-3=0\) \(\left(S=-\frac{b}{a};P=\frac{c}{a}\right)\)
\(\Leftrightarrow2\left(-\frac{-2m-2}{1}\right)^2-4\left(\frac{m}{1}\right)-\left(-\frac{-2m-2}{1}\right)-\left(\frac{m}{1}\right)^2-3=0\)
\(\Leftrightarrow2\left(2m+2\right)^2-4m-2m-2-m^2-3=0\)
\(\Leftrightarrow8m^2+16m+8-4m-2m-2-m^2-3=0\)
\(\Leftrightarrow7m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\)
Vậy với \(\left[{}\begin{matrix}m_1=\frac{-3}{7}\\m_2=-1\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt thỏa mãn yêu cầu đề bài.
CHÚC BẠN HỌC TỐT!