\(\left(9x+1\right)\left(x-2m\right)=\left(3x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Thay : \(x=1\) vào phương trình : 

\(\left(9\cdot x+1\right)\left(1-2m\right)=\left(3\cdot1+2\right)\left(3\cdot1-5\right)\)

\(\Leftrightarrow10\cdot\left(1-2m\right)=5\cdot\left(-2\right)\)

\(\Leftrightarrow1-2m=-1\)

\(\Leftrightarrow m=1\)

14 tháng 8 2016

(1-2m)2 - 4m(m-2) >0

1-4m +4m2-4m2 +8m >0

4m +1 >0

m > -1/4

14 tháng 8 2016

với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?

14 tháng 8 2016

Bơ t hết rồi ak khocroi

3 tháng 6 2021

Thay : \(x=3\) vào phương trình :

\(12-2\cdot\left(1-3\right)^2=4\cdot\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)

\(\Leftrightarrow12-8=12-4m\)

\(\Leftrightarrow4m=8\)

\(\Leftrightarrow m=2\)

3 tháng 6 2021

mình cảm ơn ạ:>

11 tháng 2 2018

\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn

11 tháng 2 2018

cảm ơn cậu giúp mk câu c với ạ

14 tháng 8 2016

1. Nếu m = 0 => -x-2=0 => x = -2 là nghiệm hữu tỉ (nhận)

2. Nếu \(m\ne0\) , xét \(\Delta=\left(1-2m\right)^2-4.m.\left(m-2\right)=4m+1\)

Để pt có nghiệm hữu tỉ thì \(\Delta\) phải là một số chính phương lẻ , đặt \(\Delta=\left(2k+1\right)^2\) (k thuộc N)

Suy ra \(4k^2+4k+1=4m+1\Leftrightarrow m=k^2+k=k\left(k+1\right)\)

Vậy m = k(k+1) với k là số tự nhiên thì pt có nghiệm hữu tỉ.

29 tháng 3 2020

Bài 5 :

a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)

=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)

=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

=> \(36x+3=0\)

=> \(x=-\frac{1}{12}\)

Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)

b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)

=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)

=> \(35x-5+60x-96+6x=0\)

=> \(101x-101=0\)

=> \(x=1\)

Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)

c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)

=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)

=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)

=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)

=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)

=> \(-64x+123=0\)

=> \(x=\frac{123}{64}\)

Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)

1 tháng 7 2017

Ta có : \(P=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)

=\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}\)

=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}\)

= \(\dfrac{1}{x}-\dfrac{1}{x+5}=\dfrac{5}{x\left(x+5\right)}\)

a, Với x=\(\dfrac{\sqrt{29}-5}{2}\Rightarrow A=\dfrac{5}{\dfrac{\sqrt{29}-5}{2}\left(\dfrac{\sqrt{29}-5}{2}+5\right)}\)

Mấy cái còn lại tương tự , bạn tự làm nha

14 tháng 1 2016

a) m = -3/4

b) m = 1

mình tính ra như vầy nè , tick cho mình nha ! ! ! thanks