K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Phương trình x2– 2x + m = 0 có nghiệm khi ∆' = 1 - m ≥ 0 hay khi m ≤ 1

Khi đó x1 + x2 = 2, x1 . x2 = m

b) Phương trình x2 – 2(m – 1)x + m2 = 0 có nghiệm khi

\(\text{∆}'=m^2-2m+1-m^2=1-2m\ge0\)' hay khi m \(\le\dfrac{1}{2}\)

Khi đó x1 + x2 = -2(m – 1), x1 . x2 = m2

4 tháng 4 2017

a) Phương trình x2– 2x + m = 0 có nghiệm khi ∆' = 1 - m ≥ 0 hay khi m ≤ 1

Khi đó x1 + x2 = 2, x1 . x2 = m

b) Phương trình x2 – 2(m – 1)x + m2 = 0 có nghiệm khi

∆' = m2 - 2m + 1 – m2 = 1 – 2m ≥ 0 hay khi m ≤

Khi đó x1 + x2 = -2(m – 1), x1 . x2 = m2

8 tháng 3 2017

a) Phương trình  x 2 − 2 x + m = 0

Có a = 1; b = -2; c = m nên b’= -1

⇒ Δ ' = ( − 1 ) 2 − 1 ⋅ m = 1 − m

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2; tích bằng m.

b) Phương trình

  x 2 + 2 ( m − 1 ) x + m 2 = 0 C ó   ( a = 1 ; b = 2 ( m − 1 ) c = m 2  nên  b ' = m − 1 ⇒ Δ ' = b ' 2 − a c = ( m − 1 ) 2 − m 2 = − 2 m + 1

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ - 2m + 1 ≥ 0 ⇔ m ≤ 1/2.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ ½, phương trình có hai nghiệm có tổng bằng -2(m – 1), tích bằng  m 2

20 tháng 9 2017

Phương trình x2 + 2(m – 1)x + m2 = 0

Có a = 1; b = 2(m – 1); c = m2 nên b’ = m-1

⇒ Δ’ = b'2 – ac = (m – 1)2 – m2 = - 2m + 1.

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ - 2m + 1 ≥ 0 ⇔ m ≤ 1/2.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với m ≤ ½, phương trình có hai nghiệm có tổng bằng -2(m – 1), tích bằng m2

2 tháng 11 2019

Phương trình x2 – 2x + m = 0

Có a = 1; b = -2; c = m nên b’= -1

⇒ Δ’ = (-1)2 – 1.m = 1 – m

Phương trình có nghiệm ⇔ Δ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1.

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2; tích bằng m.

23 tháng 4 2022

\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)

\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)

\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)

NV
7 tháng 4 2022

a.

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2m-4\end{matrix}\right.\)

c.

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow m^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+4=0\Rightarrow m=2\)

7 tháng 4 2022

a.\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)

=> pt luôn có nghiệm với mọi m

b.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=2m-4\end{matrix}\right.\)

c.\(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=4\)

\(\Leftrightarrow\left(-m\right)^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+8-4=0\)

\(\Leftrightarrow m^2-4m+4=0\)

\(\Leftrightarrow\left(m-2\right)^2=0\)

\(\Leftrightarrow m=2\)

15 tháng 3 2018

2 x 2  – (4m + 3)x + 2 m 2  – 1 = 0 (2)

Phương trình (2) có nghiệm khi và chỉ khi ∆ ≥ 0

Ta có:  ∆  = - 4 m + 3 2  – 4.2(2 m 2  – 1)

= 16 m 2  + 24m + 9 – 16 m 2  + 8 = 24m + 17

∆   ≥  0 ⇔ 24m + 17  ≥  0 ⇔ m  ≥  -17/24

Vậy khi m  ≥  -17/24 thì phương trình đã cho có nghiệm.

Giải phương trình (2) theo m:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

24 tháng 2 2022

a) Thay \(x=0\) vào phương trình ta có:

\(\left(m-1\right).0^2-2m.0+m+1=0.\\ \Leftrightarrow m+1=0.\\ \Leftrightarrow m=-1.\)

b) Ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right).\)

 \(\Delta'=m^2-\left(m^2-1\right).\\ =m^2-m^2+1.\\ =1>0.\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(x_1;x_2.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m+1}{m-1}.\\x_1+x_2=\dfrac{2m}{m-1}.\left(1\right)\end{matrix}\right.\)

Theo đề bài: \(x_1.x_2=5.\)

\(\Rightarrow\dfrac{m+1}{m-1}=5.\\ \Leftrightarrow m+1=5m-5.\\ \Leftrightarrow4m-6=0.\\ \Leftrightarrow m=\dfrac{3}{2}.\)

Thay \(m=\dfrac{3}{2}\) vào \(\left(1\right):\)

\(x_1+x_2=\) \(\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=\dfrac{3}{\dfrac{1}{2}}=6.\)

17 tháng 11 2018

Thay x = −3 vào phương trình

(m – 2)x2 – (m2 + 1)x + 3m = 0, ta có:

(m – 2) (−3)2 – (m2 + 1) (−3) + 3m = 0

⇔ 9m – 18 + 3m2 + 3 + 3m = 0

⇔ 3m2 + 12m – 15 = 0

⇔ m2 + 4m – 5 = 0

⇔ m2 – m + 5m – 5 = 0

⇔ m (m – 1) + 5 (m – 1) = 0

⇔ (m – 1) (m + 5) = 0 ⇔ m = 1 m = − 5

Suy ra tổng các giá trị của m là (−5) + 1 = −4

Đáp án cần chọn là: B

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined