Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Để đường thẳng đi qua A
\(\Rightarrow2.1-m^2-m=0\Leftrightarrow m^2+m-2=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
b.
Hoành độ giao điểm của (d) với trục hoành:
\(2x+4=0\Rightarrow x=-2\Rightarrow\) hai đường thẳng cắt nhau tại (-2;0)
(d') đi qua (-2;0) nên:
\(-2+m-2=0\Rightarrow m=4\)
Xét phương trình hoành độ giao điểm của d và d’:
− 4 x + m + 1 = 4 3 x + 15 – 3 m ⇔ - 16 m x = 14 – 4 m ⇔ x = 3 4 m − 14 16
d cắt d’ tại điểm nằm trên trục tung
⇔ x = 3 4 m − 14 16 = 0 ⇔ 4 m – 14 = 0 ⇔ m = 7 2
Đáp án cần chọn là: D
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Để (d1) và (d2) cắt nhau tại một điểm thuộc trục tung thì \(\left\{{}\begin{matrix}2\ne2m+1\\-m+1=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne1\\-m-2m=-5-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-3m=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m=2\end{matrix}\right.\Leftrightarrow m=2\)
Vậy: m=2
Cắt nhau tại 1 điểm trên trục tung <=>
\(\left\{{}\begin{matrix}a-khác-a'\\b=b'\end{matrix}\right.< =>\left\{{}\begin{matrix}2-khác-2m+1\\-m+1=-5\end{matrix}\right.< =>\left\{{}\begin{matrix}m-khác-\dfrac{1}{2}\\m=6\end{matrix}\right.\)
\(a,\Leftrightarrow A\left(0;2\right)\in\left(d\right)\Leftrightarrow3m-1=2\Leftrightarrow m=1\\ b,\Leftrightarrow m-2=-2\Leftrightarrow m=0\\ c,\Leftrightarrow\left\{{}\begin{matrix}m-2=3\\3m-1\ne-2\end{matrix}\right.\Leftrightarrow m=5\\ d,\text{PT hoành độ giao điểm: }\left(m-2\right)x+3m-1=3x-2\\ \Leftrightarrow x\left(m-2-3\right)+3m-1+2=0\\ \Leftrightarrow x\left(m-5\right)=-3m-1\Leftrightarrow x=\dfrac{-3m-1}{m-5}\)
Vì 2 đt cắt bên trái trục tung nên hoành độ âm
\(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-3m-1}{m-5}< 0\Leftrightarrow\dfrac{3m+1}{m-5}>0\Leftrightarrow\left[{}\begin{matrix}m>5\\m< -\dfrac{1}{3}\end{matrix}\right.\)
\(e,\text{Gọi điểm cố định mà }\left(d\right)\text{ luôn đi qua là }M\left(x_0;y_0\right)\\ \Leftrightarrow\left(m-2\right)x_0+3m-1=y_0\\ \Leftrightarrow mx_0-2x_0+3m-1-y_0=0\\ \Leftrightarrow m\left(x_0+3\right)-\left(2x_0+y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\2x_0+y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\Leftrightarrow M\left(-3;5\right)\\ \text{Vậy }\left(d\right)\text{ luôn đi qua }M\left(-3;5\right)\)
Phương trình hoành độ giao điểm của (d) và (d') là:
\(x+m+1=-x+3m-1\)
\(\Leftrightarrow2x=2m-2\)
\(\Leftrightarrow x=m-1\)
\(\Rightarrow y=x+m+1=m-1+m+1=2m\)
Vậy (d) cắt (d') tại điểm \(A\left(m-1,2m\right)\)
Để A thuộc \(\left(d_0\right):y=3x-1\) thì \(2m=3\left(m-1\right)-1\)
\(\Leftrightarrow2m=3m-3-1\)
\(\Leftrightarrow m=4\)
Vậy \(m=4\)