K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

có bậc là 3 => ( \(^{m^2}\)- 25 ) \(^{x^4}\)= 0

hay ( \(m^2\)- 25 ) = 0 => \(m^2\)= 25

=> m = 5

19 tháng 2 2021

Để f(x) là đa thức bậc 3 thì 

\(\hept{\begin{cases}m^2-25=0\\20+4m\ne0\end{cases}}\Rightarrow\hept{\begin{cases}m=\pm5\\m\ne-5\end{cases}\Rightarrow}m=5\)

Vậy m = 5 

NV
2 tháng 4 2023

Đa thức đã cho là bậc 3 theo biến x khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)

\(\Rightarrow m=5\)

7 tháng 7 2020

Ta có :  \(f_{\left(x\right)}=\left(m^2-25\right)x^4+\left(20+4m\right)x^3+7x^2-9\)

Để đa thức  \(f_{\left(x\right)}\)  là đa thức bậc  \(3\) thì : 

\(m^2-25=0\)

\(\Leftrightarrow m^2=25\)

\(\Leftrightarrow m=\pm5\)

Vậy để đa thức \(f_{\left(x\right)}\) là đa thức bậc 3 theo biến x thì \(m=\pm5\)

 
9 tháng 3 2016

có bậc là 3 => ( m2  - 25 ) x4 = 0

hay ( m- 25 ) = 0 => m= 25

                      => m = 5

2 tháng 5 2023

a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)

\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)

\(P\left(x\right)=-2x^3-11x^2+7x+5\)

b) Thay x=1 vào đa thức P(x) ta được:

\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)

a: A(x)=-x^3+7x^2+2x-15

b: Bậc 3

c: Hệ số cao nhất là -1

Hệ số tự do là -15

d: A(x)+B(x)

=-x^3+7x^2+2x-15+4x^3-x^2+5x-15

=3x^3+6x^2+7x-30

27 tháng 4 2022

thu gọn rồi chứng minh nó > 0

14 tháng 4 2017

a) Giải:

\(f\left(x\right)=\left(m^2-25\right)x^4+\left(20+4\right)x^3+7x^2-9\) là đa thức bậc \(3\) theo biến \(x\) khi:

\(\left\{{}\begin{matrix}m^2-25=0\\20+4m\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=\pm5\\m\ne-5\end{matrix}\right.\)

Vậy \(m=5\) thì \(f\left(x\right)\) là đa thức bậc \(3\) theo biến \(x\)

b) Ta có:

\(g\left(x\right)=16x^4-72x^2+90\)

\(=\left(4x^2\right)^2-2.4x^2.9+9^2+9\)

\(=\left(4x^2-9\right)^2+9\)

Với mọi giá trị của \(x\) ta có: \(\left(4x^2-9\right)^2\ge0\)

\(\Rightarrow g\left(x\right)=\left(4x^2-9\right)^2+9\ge9\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left(4x^2-9\right)^2=0\Leftrightarrow x=\pm\dfrac{3}{2}\)

Vậy GTNN của đa thức \(g\left(x\right)\)\(9\) tại \(x=\pm\dfrac{3}{2}\)

27 tháng 4 2019

b sai rồi

15 tháng 5 2021

Trả lời câu hỏi của tôi đi. Tí tôi trả lời của bạn chings xác 100% luôn. UY TÍN BẠN NHÉ

11 tháng 5 2022

hi cho mik ít tiền