K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021
Mik nhầm 2) Cho parabol (P): y =x và đường thắng (d): y= mx - m+ 1. a) Chứng minh (d) và (P) luôn có điểm chung với mọi giá trị của m. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng khoảng cách đến trục tung bằng 4. Bài IV (3 điểm): Từ điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC đến đường tròn (B, C là các tiếp điểm). Gọi M là giao điểm của OA và BC. Gọi I là trung điểm của BM. Đường thẳng qua I và vuông góc với OI cắt các tia AB, AC theo thứ tự tại D, E. BE cắt AO tại G. Chứng minh: 1) Tứ giác ABOC nội tiếp. 4MO.MA. Giúp mik 2b về bài hình thôi nhé thanks
AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Đề thiếu. Bạn xem lại đề.

29 tháng 5 2023

a.

Phương trình hoành độ giao điểm: \(\dfrac{1}{2}x^2=x-m\Rightarrow x^2-2x+2m=0\)

\(\Delta'=1-2m>0\Leftrightarrow m< \dfrac{1}{2}\) (do (d) cắt (P) tại 2 điểm phân biệt)

Để 2 điểm nằm cùng về phía trục tung thì 2 nghiệm \(x_1,x_2\) cùng dấu.

Mà theo vi ét \(x_1+x_2=2\Rightarrow\) 2 nghiệm cùng dương.

\(\Rightarrow x_1+x_2=2m>0\Leftrightarrow m>0\)

Kết hợp điều kiện ta có \(0< m< \dfrac{1}{2}\)

b.

Từ M đến trục tung là 2 \(\Rightarrow\) \(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(M\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{2}.2^2=2\\y_2=\dfrac{1}{2}.\left(-2\right)^2=2\end{matrix}\right.\)

\(\Rightarrow M_1\in\left(2;2\right)\) và \(M_2\in\left(-2;2\right)\)

27 tháng 5 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=\left(2m-1\right)x+8\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-8=0\) (*)

Có \(ac=-8< 0\) => pt luôn có hai nghiệm trái dấu

=> (d) luôn cắt (P) tại hai điểm pb có hoành độ trái dấu hay (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung

Hoành độ gđ của A và B là hai nghiệm của pt (*) mà \(x_1< x_2\Rightarrow x_1< 0< x_2\)

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=-8\end{matrix}\right.\)  (|)

Giả sử \(\dfrac{\left|x_1\right|}{\left|x_2\right|}=4\)

\(\Leftrightarrow\dfrac{-x_1}{x_2}=4\)\(\Leftrightarrow x_1+4x_2=0\)  (||)

Từ (|), (||) có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1+4x_2=0\\x_1x_2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1-2m}{3}\\x_1=\dfrac{4\left(2m-1\right)}{3}\\x_1x_2=-8\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(1-2m\right)}{3}.\dfrac{4\left(2m-1\right)}{3}=-8\) \(\Leftrightarrow\left(1-2m\right)^2=18\)

\(\Leftrightarrow m=\dfrac{1\pm\sqrt{18}}{2}\)

Vậy...

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx+2m-1=0(*)$

Để $(p)$ và $(d)$ cắt nhau tại 2 điểm phân biệt thì pt $(*)$ có 2 nghiệm phân biệt 

$\Leftrightarrow \Delta'=m^2-(2m-1)>0\Leftrightarrow (m-1)^2>0\Leftrightarrow m\neq 1$

Áp dụng định lý Viet:

$x_1+x_2=2m$

$x_1x_2=2m-1$

$(P)$ và $(d)$ cắt nhau tại 2 điểm nằm khác phía trục tung

$\Leftrightarrow x_1x_2<0$

$\Leftrightarrow 2m-1<0\Leftrightarrow m< \frac{1}{2}$

Khoảng cách từ 2 giao điểm đến trục hoành là:

$|y_1|+|y_2|=|x_1^2|+|x_2^2|=5$

$\Leftrightarrow x_1^2+x_2^2=5$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=5$

$\Leftrightarrow (2m)^2-2(2m-1)=5$
$\Leftrightarrow 4m^2-4m-3=0$

$m=\frac{-1}{2}$ hoặc $m=\frac{3}{2}$

Vì $m\neq 1$ và $m< \frac{1}{2}$ nên $m=\frac{-1}{2}$

 

 

15 tháng 11 2020

Phương trình hoành độ giao điểm của (P) và (d):

x2 + 2x -m2 + 1 = 0 

Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0

Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)\(\in\varnothing\)

7 tháng 11 2017

Bài 3 làm sao v ạ?

Chọn D