Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ \(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
Trừ vế theo vế của 2 pt trên ta đc
\(\left(x-y\right)\left(x^2+y^2+xy-3x-3y+a\right)=0\)(chỗ này mk làm hơi tắt , bn cố hiểu nhé ^^ )
*Nếu x=y thay vào phương trình đầu ta có
\(x^3-5x^2+ax=0\)
\(\Leftrightarrow x\left(x^2-5x+a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x^2-5x+a=0\left(1\right)\end{cases}}\)Để hpt có nghiệm duy nhất x=y=0 thì pt (1) phải vô nghiệmPt (1) vô nghiệm \(\Leftrightarrow\Delta< 0\Leftrightarrow a>\frac{25}{4}\)( Cái này chắc bn hiểu :> )Ta thấy hpt luôn có nghiệm x = y = 0 * Nếu \(x\ne y\) thì \(x^2+x\left(y-3\right)+y^2-3y+a=0\)và pt này phải vô nghiệm vì đã có 1 cặp nghiệm x=y=0 rồiPt này vô nghiệm \(\Leftrightarrow\Delta< 0\) \(\Leftrightarrow\left(y-3\right)^2-4\left(y^2-3y+a\right)< 0\) \(\Leftrightarrow-3y^2+6y+9-4a< 0\)Luôn đúng vì \(a>\frac{25}{4}\)Vậy để hpt có nghiệm duy nhất thì \(a>\frac{25}{4}\)P/S: Cách này có lẽ hơi trìu tượng -_- và có thể có 1 vài lỗi sai , mog bn thông cảm ^^- Để hệ phương trình có nghiệm duy nhất
\(\Leftrightarrow\dfrac{a}{1}\ne-\dfrac{1}{a}\)
\(\Leftrightarrow a^2\ne-1\) ( Luôn đúng )
Vậy mọi a thuộc R hệ phương trình luôn có 1 nghiệm duy nhất .
- Ta có : \(\left\{{}\begin{matrix}y=ax-2\\x+a\left(ax-2\right)=3\end{matrix}\right.\)
- Từ PT ( II ) => \(x+xa^2-2a=3\)
\(\Rightarrow x=\dfrac{2a+3}{a^2+1}\)
- Thay lại x vào PT ( I ) ta được : \(y=\dfrac{a\left(2a+3\right)}{a^2+1}-2\)
\(=\dfrac{2a^2+3a-2a^2-2}{a^2+1}=\dfrac{3a-2}{a^2+1}\)
Vậy ...
Thế vào phương trình 2x +my = 8 ta được. 2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m.
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm.
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m -2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất.
Vậy hệ đã cho có nghiệm với mọim, và khi m khác 4 thì hệ ...
Ta có: \(\hept{\begin{cases}x-my=m+3\left(1\right)\\mx-4y=\left(-2\right)\left(2\right)\end{cases}}\)
Từ (1), suy ra \(my=\left(m+3\right)+x\)(3)
Thay (3) vào 2. Ta có: \(mx-4\left[\left(m+3\right)+x\right]=-2\)
\(\Leftrightarrow mx-\left(4m-12+x\right)=-2\)
\(\Leftrightarrow6mx=-11\)
\(\Leftrightarrow mx=\left(-11\right):6=-\frac{11}{6}\)(4)
Để hệ phương trình có nghiệm duy nhất (x;y) với x +y > 0 khi PT (4) có nghiệm duy nhất
\(\Leftrightarrow m\ne0\)
\(\hept{\begin{cases}x+ay=1\\\\-ax+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-\frac{2a^2}{1+a^2}=\frac{1-a^2}{1+a^2}\\y=\frac{2a}{1+a^2}\end{cases}}\)
Theo đề bài ta có \(\hept{\begin{cases}x< 0\\y< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-a^2< 0\\2a< 0\end{cases}}\)
\(\Leftrightarrow x< -1\)
a/ Ta xem đây là hệ phương trình 3 ẩn rồi giải bình thường.
\(\hept{\begin{cases}x+ay=1\\-ax+y=a\\2x-y=a+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\\2\left(1-ay\right)-y=a+1\end{cases}}\)
Tới đây giải tiếp nhé. Không có bút giấy nháp nên giúp tới đây nhé. Chỉ cần thế là được nhé