K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

ta có\(2x^2+2y^2=5xy\)

\(\Leftrightarrow2x^2-5xy+2y^2=0\)\(\Leftrightarrow\left(x-4y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\2x=y\end{cases}}\)

\(0< x< y\)\(\Rightarrow x=4y\)là vô lý

\(\Rightarrow2x=y^{\left(1\right)}\)

Thế (1)vào biểu thức E ta được:

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Vậy biểu thức E có giá trị là 3

Xong rồi đấy nhớ k cho mình nhé!

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

24 tháng 9 2016

ta có 2x2+2y2=5xy

=>2(x+y)2=9xy và 2(x-y)2=xy

M2=\(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\)

vậy M=3 hoặc M=-3

25 tháng 9 2016

Ta dùng phương pháp tách đa thức thành nhân tử ta được

=> x+y=2x2+2y2=2(x2+y2)=9xy

=> x-y=2x2-2y2=2(x2-y2)=xy=1xy=xy

=>M=(x+y)2/(x-y)2=9xy:xy=9

Nên M= cộng trừ căn bậc 2 của 9

19 tháng 8 2018

2x2 + 3y2 = 5xy

=> 2x2 + 3y2 - 5xy = 0

=> 2 ( x2 - 2xy + y2 )  - xy + y2 = 0

=> 2 ( x - y ) 2 - y ( x - y ) = 0

=> ( x - y )[ 2( x - y ) - y ] = 0

=> ( x- y ) ( 2x - 2y - y ) = 0

=> ( x - y ) ( 2x - 3y ) = 0

TH1 : x - y = 0

=> x = y 

Thay x = y vào \(\frac{x+2y}{3x-y}\)

=> \(\frac{x+2y}{3x-y}=\frac{y+2y}{3y-y}\)\(=\frac{3y}{2y}=\frac{3}{2}\)

TH2 : 2x - 3y = 0

=> 2x = 3y

=> \(\frac{x}{y}=\frac{3}{2}\)

=> x = \(\frac{3}{2}.y\)

Thay x = \(\frac{3}{2}.y\)vào \(\frac{x+2y}{3x-y}\)

=> \(\frac{x+2y}{3x-y}=\frac{\frac{3}{2}.y+2y}{3.\frac{3}{2}y-y}\)\(=\frac{\frac{7}{2}.y}{\frac{7}{2}.y}=1\)

6 tháng 12 2021

toán này là toán lớp 9 mà

19 tháng 11 2014

có 2.(x+y)2 = 2x2 + 2y2 +4xy =5xy + 4xy = 9xy

2(x-y)2 = 2x2 + 2y2 -4xy =5xy  - 4xy = xy

suy ra \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\Rightarrow\frac{x+y}{x-y}=3\)

hoặc \(\frac{x+y}{x-y}=-3\)

vì 0<x<y nên x-y<0 và x+y>0

suy ra A< 0.vậy A = -3

24 tháng 12 2017

a) \(B=\left(x^2+2x+1\right)+\left(y^2-2.2.y+2^2\right)=\left(x+1\right)^2+\left(y-2\right)^2\)

thay x=99 và y=102 vào B ta có:

\(B=\left(99+1\right)^2+\left(102-2\right)^2=100^2-100^2=0\)

b) 

24 tháng 12 2017

b) \(2x^2+16x+32-2y^2=2\left(x^2+8x+16-y^2\right)=2\left(\left(x+4\right)^2-y^2\right)=2\left(x+4-y\right)\left(x+4+y\right)\)

1 tháng 3 2017

ai lam on giup to voi