Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x-x+3\right)=0\\ \Rightarrow3\left(x+3\right)=0\Rightarrow x=-3\\ b,A:B=\left(2x^2-x+4x-2\right):\left(2x-1\right)\\ =\left[x\left(2x-1\right)+2\left(2x-1\right)\right]:\left(2x-1\right)\\ =x+2\)
câu a ) a*x^19+1
câu b )
đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b
Ta có: x67+x47+x27+x7+x+1=(x2−1).Q(x)+ax+bx67+x47+x27+x7+x+1=(x2−1).Q(x)+ax+b
Cho x=1 rồi x=-1 ta được: \hept{1+1+1+1+1+1=a+b−1−1−1−1−1+1=−a+b\hept{1+1+1+1+1+1=a+b−1−1−1−1−1+1=−a+b
⇔\hept{a+b=6−a+b=−4⇔\hept{a=5b=1⇔\hept{a+b=6−a+b=−4⇔\hept{a=5b=1
Vậy dư trong phép chia trên là 5x+1
bài này ta làm như sau " chủ yếu là bấm máy thôi"
2006 đồng dư với 26 (mod 33)
200612 đồng dư với 2612 (mod 33)
262 đòng dư với 16(mod 33)
=> (262)6 đồng dư với 166 (mod 33) mà 166 đồng dư với 16 (mod 33)
vậy số dư của phép chia 200612 cho 33
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
\(\dfrac{-18x^4y^3-24x^3y^4+12x^3y^3}{-6x^2y^3}=3x^2+4xy-2x\)
làm sao ra 2 vậy bạn
cái bài này = 6 hay 4 v