Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout ta được:
\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)
Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)
Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)
Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên
\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)
Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1
Khi đó
\(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)
\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)
\(=4\left(ab+bc+ca+a+b+c\right)+3\)
Vậy thì mn + np + pm chia 4 dư 3.
b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:
Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4
Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.
Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.