Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quan trọng là cách làm bạn ơi. Nếu trình bày ra mình sẽ cho bn
\(f\left(x\right)=\left(x^2-1\right)g\left(x\right)+ax+b\)
\(f\left(1\right)=\left(1^2-1\right)g\left(1\right)+a+b=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=2\)
\(f\left(-1\right)=\left(\left(-1\right)^2-1\right)g\left(-1\right)+a\left(-1\right)+b=-1-1+1-1+1+1=0\)
\(\hept{\begin{cases}a+b=2\\-a+b=0\end{cases}}\Leftrightarrow a=b=1\)
Vậy đa thức dư là : x + 1
1/ \(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
2/ \(F\left(x\right)=P\left(x\right).\left(x+2\right)+10\Rightarrow F\left(-2\right)=10\)
\(F\left(x\right)=Q\left(x\right).\left(x-2\right)+24\Rightarrow F\left(2\right)=24\)
Do \(x^2-4\) bậc 2 nên đa thức dư tối đa là bậc nhất có dạng \(ax+b\)
\(F\left(x\right)=R\left(x\right).\left(x^2-4\right)+ax+b\)
Thay \(x=-2\Rightarrow F\left(-2\right)=-2a+b=10\)
Thay \(x=2\Rightarrow F\left(2\right)=2a+b=24\)
\(\Rightarrow\left\{{}\begin{matrix}-2a+b=10\\2a+b=24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\) \(\Rightarrow\) dư \(\frac{7}{2}x+17\)
3/Vì đa thức chia có bậc 2 nên đa thức dư có bậc 1, có dạng ax+b. Ta có :\(x^{2015}+x^{1945}+x^{1930}+x^2-x+1=Q\left(x\right).\left(x^2-1\right)+ax+b\)Thay x=1 được 4=a+b(1)
Thay x=-1 được 2=-a+b(2)
Cộng (1) và (2) được 6=2b suy ra b=3, từ đó suy ra a=1
Vậy dư là x+3
Áp dụng định lý Bezout ta được:
\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)
Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)
Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)
Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên
\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)
Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)
Ta cần tìm số dư khi chia \(A\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho \(B\left(x\right)=x^2-1\)
Số dư của \(A\left(x\right)\) cho \(B\left(x\right)\) có bậc là 1. Đặt đa thức dư có dạng \(ax+b\)
Ta có : \(A\left(x\right)=B\left(x\right).H\left(x\right)+ax+b\)
Hay : \(A\left(x\right)=\left(x^2-1\right).H\left(x\right)+ax+b\)
+) Xét \(x=1\) thì : \(A\left(1\right)=a+b\)
\(\Leftrightarrow1+1+1-1-1+1=a+b\)
\(\Leftrightarrow a+b=2\) (1)
+) Xét \(x=-1\) thì \(A\left(-1\right)=b-a\)
\(\Leftrightarrow-1-1+1-1-\left(-1\right)+1=b-a\)
\(\Leftrightarrow b-a=0\) (2)
Từ (1) và (2) suy ra \(a=1,b=1\)
Vậy đa thức dư có dạng \(x+1\)
Vậy số dư của phép chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho \(x^2-1\) là \(x+1\)