Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
a) A = ( x 2 – 6x)B.
b) A = (-x – 8)B + 2
c) A = (x + 3)B + 6.
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a) \(\left(x^2+2x+1\right)\left(x+1\right)\)
\(=x^3+x^2+2x^2+2x+x+1\)
\(=x^3+3x^2+3x+1\)
b) Ta có: \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)
\(=5x^3-x^4-5x^2+x^3+10x-2x^2-5+5x\)
\(=-x^4+6x^3-7x^2+15x-5\)
Ta có: \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)
\(=-\left(5-x\right)\left(x^3-x^2+2x-1\right)\)
\(=x^4-6x^3+7x^2-15x+5\)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
a) Kết quả - x 2 + 2. b) Kết quả − 1 2 ( 4 x 2 + 10 x + 25 ) .
c) Kết quả - ( x 3 + 1 ) 2 .
\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)