Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ cơ số 2 có mũ lẻ thì số đó chia cho 3 dư 1, mũ chẵn thì chia 3 dư 2
Cứ 1 cặp như vậy cộng lại thì sẽ chia hết cho 3 ( vd: 2^0 + 2^1 ; 2^2 + 2^3 ;...)
Vậy từ 2^3 đến 2^2010 có 1004 cặp chia hết cho 3 như thế
Vậy chỉ còn lại 2^0 + 2^1 + 2^2 = 7, chia cho 3 dư 1
Đáp án: dư 1
A =1+ (2+22+23) + ( 24+25+26 ) + .....+ ( 22008 +22009+22010) = 1+ 7 .( 2+24 + 27 +.....+ 22008)
=> A chia 7 dư 1
ta co :
A=20+21+22+...22009+22010
=>A=(20+21+22)+...+(22008+22009+22010)
=>A=(2^0+2^1+2^2)+...+2^2008.(2^0+2^1+2^2)
=>A=(1+...+2^2008).7 chia het cho 7
=>A chia het cho 7
=>A chia het cho 7 du 0
**** nhe
2) M = 1 + (2 + 22) + ....... + (22009 + 22010)
= 1 + (2.1 + 2.2) +..... + (22009.1 + 22009.2)
= 1 + 2(1+2) + ..... + 22009(1+2)
= 1 + 3.(2 + 23 + ... + 22009)
Vậy M chia 3 dư 1
3) C = 2 + (22 + 23) + ..... + (216 + 217)
= 2 + 22.3 + ....... + 216.3
= 3.(22 + 24 + ....... + 216) + 2
Vậy C không chia hết cho 3
Đặt \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)
\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))
Ta thực hiên phép chia :
\(A=\frac{2^{2018}}{2^{2016}-1}\)
\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)
Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1