K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

A=1+21+22+23+24+....+21013+22014

A=(1+21)+(22+23)+....+(22013+22014)

A=1.1+1.2+1.22+2.22+....+1.22013+2.22013

A=1.(1+2)+22.(1+2)+...+22013.(1+2)

A=1.3+22.3+....+22013.3

A=3.(1+22+....+22013)

\(\Rightarrow\)A\(⋮\)3

28 tháng 10 2016

Ta có:

\(A=1+2^2+2^3+...+2^{2011}+2^{2012}+2^{2013}\)

\(A=1+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2011}+2^{2012}+2^{2013}\right)\)

\(A=1+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2011}\cdot\left(1+2+2^2\right)\)

\(A=1+2^2\cdot7+2^5\cdot7+...+2^{2011}\cdot7\)

\(A=1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\)

\(7⋮7\)

\(\Rightarrow7\cdot\left(2^2+2^5+...+2^{2011}\right)⋮7\)

\(\Rightarrow1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\) chia 7 dư 1

hay \(A\) chia 7 dư 1

Vậy A chia 7 dư 1.

29 tháng 10 2016

thanks

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327