K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2022

Gọi độ dài mỗi cạnh tam giác là a,b,c(a,b,c>0)

Theo bài ra ta có:\(\left\{{}\begin{matrix}a+b+c=56,4\\\dfrac{a}{\dfrac{1}{\dfrac{1}{3}}}=\dfrac{b}{\dfrac{1}{0,25}}=\dfrac{c}{\dfrac{1}{0,2}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=56,4\\\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{56,4}{12}=4,7\)

\(\dfrac{a}{3}=4,7\Rightarrow a=14,1\\ \dfrac{b}{4}=4,7\Rightarrow b=18,8\\ \dfrac{c}{5}=4,7\Rightarrow c=23,5\)

Vậy ...

22 tháng 9 2018

Gọi độ dài 3 cạnh của tam giác lần lượt là x; y; z

Ta có: \(S=\frac{1}{2}x.\frac{1}{3}=\frac{1}{2}y.\frac{1}{4}=\frac{1}{2}z.\frac{1}{5}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{70,5}{12}=5,875\)

\(\Rightarrow\hept{\begin{cases}3.5,875=17,625\\4.5,875=23,5\\5.8,75=29,375\end{cases}}\)

=> độ dài lần lượt là: 17,625; 23,5; 29,375

20 tháng 10 2016

Gọi độ dãi mỗi cạnh của tam giác là: a,b,c tỉ lệ với \(\frac{1}{3};0,25;0,2\) => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{5}}=\frac{56,4}{\frac{47}{60}}=72\)

=> \(\begin{cases}a=24\\b=18\\c=\frac{72}{15}\end{cases}\)

19 tháng 1 2017

nit mù tịt đầu óc hột vịt lộn, ng ta cho độ dài các đg cao.....

7 tháng 12 2019

Lười lắm hướng dẫn giải thôi

gọi 3 cạnh đó là x;y;z ( x;y;z >0 , cm)

vì ba đường cao của tam giác tỉ lệ nghịch với 5;7;8

=> x.5=y.7=z.8

=> \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{8}}\)

áp dụng t/c dãy tỉ số = nhau rồi cộng 3 cái lại xét x= ? ; y=? ; z=?

7 tháng 12 2019

cho mình hỏi đề bài người ta nói mình tìm độ dài của 3 cạnh chứ ko phải tìm đường cao

25 tháng 7 2019

Giải: Gọi độ dài 3 cạnh của t/giác lần lượt là a,b,c (Đk: cm; a,b,c > 0)

Theo bài ra, ta có: 8a = 9b = 10c => \(\frac{a}{\frac{1}{8}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{10}}\) và a + b + c = 52

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{a}{\frac{1}{8}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{10}}=\frac{a+b+c}{\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}=\frac{52}{\frac{121}{360}}=\frac{18720}{121}\)

=> \(\hept{\begin{cases}\frac{a}{\frac{1}{8}}=\frac{18720}{121}\\\frac{b}{\frac{1}{9}}=\frac{18720}{121}\\\frac{c}{\frac{1}{10}}=\frac{18720}{121}\end{cases}}\) => \(\hept{\begin{cases}a=\frac{18720}{121}.\frac{1}{8}=\frac{2340}{121}\\b=\frac{18720}{121}.\frac{1}{9}=\frac{2080}{121}\\c=\frac{18720}{121}.\frac{1}{10}=\frac{1872}{121}\end{cases}}\)

Vậy ...

25 tháng 7 2019

Edogawa Conan thank you :3