K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

DKXD \(\hept{\begin{cases}9x^2-6x+2\ge0\\x^2-5x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(3x-1\right)^2+1\ge0\left(ld\right)\\x^2-5x-1\ge0\end{cases}\Leftrightarrow}x^2-5x-1\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{5-\sqrt{29}}{2}\\x\ge\frac{5+\sqrt{29}}{2}\end{cases}}}\)

22 tháng 8 2021

\(a,ĐK:9x^2-1\ne0\Leftrightarrow x^2\ne\frac{1}{9}\Leftrightarrow x\ne\pm\frac{1}{3}\)

\(b,M=\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)

với \(3x-1>0\) ta có \(M=\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)

với \(3x-1< 0\) ta có \(M=\frac{-\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}=-\frac{1}{3x+1}\)

\(c,\) th1 : \(M=\frac{1}{3x+1}\)  khi \(x>\frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{3x+1}=\frac{1}{4}\Leftrightarrow x=1\left(thoaman\right)\) 

th2 : \(M=-\frac{1}{3x+1}\) khi \(x< \frac{1}{3}\) mà \(M=\frac{1}{4}\)

\(\Leftrightarrow\frac{-1}{3x+1}=\frac{1}{4}\Leftrightarrow3x+1=-4\Leftrightarrow x=-\frac{5}{3}\left(thoaman\right)\)

\(d,M=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}< 0\) có \(\left|3x-1\right|>0\)

\(\Rightarrow\left(3x-1\right)\left(3x+1\right)< 0\)

th1 : \(\hept{\begin{cases}3x-1>0\\3x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x< -\frac{1}{3}\end{cases}\left(voli\right)}}\)

th2 : \(\hept{\begin{cases}3x-1< 0\\3x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x>-\frac{1}{3}\end{cases}\Leftrightarrow-\frac{1}{3}< x< \frac{1}{3}}\)

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

a: ĐKXĐ: x=0; x<>1

\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)

\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)

b: Sửa đề: P=1/M

P=1/4-x=-1/x-4

Để P nguyên thì x-4 thuộc {1;-1}

=>x thuộc {5;3}

31 tháng 7 2023

ĐK: \(x\in N;x\ne4\)

a

Ta thấy trong 2 trường hợp \(\sqrt{x}-2>0\) và \(\sqrt{x}-2< 0\) thì Max A xảy ra trong trường hợp \(\sqrt{x}-2>0\Rightarrow\sqrt{x}-2>2\Rightarrow x>4\)

Mà \(x\in N\Rightarrow x\in\left\{5;6;7;....\right\}\Rightarrow x\ge5\Rightarrow\sqrt{x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{x}-2\ge\sqrt{5}-2\\ \Rightarrow\dfrac{3}{\sqrt{x}-2}\le\dfrac{3}{\sqrt{5}-2}\\ \Rightarrow A\le\dfrac{3}{\sqrt{5}-2}=6+3\sqrt{5}\)

Vậy Max A \(=6+3\sqrt{5}\) khi \(x=5\left(thỏa.mãn\right)\)

31 tháng 7 2023

b

ĐK:\(x\in N;x\ne4\)

Min A xảy ra khi \(\sqrt{x}-2< 0\) \(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)

Mà \(x\in N\Rightarrow x\in\left\{0;1;2;3\right\}\)

x0123
A     \(-\dfrac{3}{2}\)\(-3\)\(-\dfrac{6+3\sqrt{2}}{2}\)\(-6-3\sqrt{3}\)

 

Vậy min A \(=-6-3\sqrt{3}\) khi \(x=3\left(thỏa.mãn\right)\)

 

a: ĐKXĐ: (x-1)(x-3)>=0

=>x>=3 hoặc x<=1

b: ĐKXĐ: (x-4)(x-3)>=0

=>x>=4 hoặc x<=3

c: ĐKXĐ: (x-5)(x-4)>=0

=>x>=5 hoặc x<=4

a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)

d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)

29 tháng 6 2021

`a)ĐK:` \(\begin{cases}x \ge 0\\x-\sqrt{x} \ne 0\\x-1 \ne 0\\\end{cases}\)

`<=>` \(\begin{cases}x \ge 0\\x \ne 0\\x \ne 1\\\end{cases}\)

`<=>` \(\begin{cases}x>0\\x \ne 1\\\end{cases}\)

`b)A=(sqrtx/(sqrtx-1)-1/(x-sqrtx)):(1/(1+sqrtx)+2/(x-1))`

`=((x-1)/(x-sqrtx)):((sqrtx-1+2)/(x-1))`

`=(x-1)/(x-sqrtx):(sqrtx+1)/(x-1)`

`=(sqrtx+1)/sqrtx:1/(sqrtx-1)`

`=(x-1)/sqrtx`

`c)A>0`

Mà `sqrtx>0AAx>0`

`<=>x-1>0<=>x>1`

29 tháng 6 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

b, Ta có : \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)

c, Ta có : \(A>0\)

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

Vậy ...

a: ĐKXĐ: x>0; x<>1

b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)

c: A nguyên

=>x-1 thuộc {1;-1;2;-2}

=>x thuộc {2;3}

6 tháng 10 2021

1) a) x<=11/2

b) x>=2

c) x#0

d) x>7

 

6 tháng 10 2021

\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)