\(\frac{x-1}{x^2-5x+4}\) xác định

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

Để phân thức xác định \(\Leftrightarrow x^2-5x+4\ne0\)

                                   <=> x2 - x - 4x + 4 \(\ne\)0

                                  <=> x( x - 1) - 4( x - 1) \(\ne\)0

                                  <=> ( x- 4)( x - 1)\(\ne\)0

=>\(x\ne4,x\ne1\)

16 tháng 12 2016
  1. ta có: x2-2x-15=x2+(3x-5x)-15

=x2 +3x-5x-15

=x(x+3)-5(x+3)

=(x+3)(x-5)

7 tháng 12 2018

a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)

\(\Leftrightarrow2x\left(x+1\right)\ne0\)

\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

b) Để phân thức bằng 1 thì :

\(5x+5=2x^2+2x\)

\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow5=2x\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy.......

7 tháng 12 2018

Phân thức xác định

\(\Leftrightarrow2x^2+2x\ne0\)

\(\Leftrightarrow2x\left(x+2\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định

A=x3/x2--4.x+2/x-x-4xx-4/xx-2

Điều kiện x \(\ne\)+-2

Ý b c tự làm 

9 tháng 12 2017

\(A=\frac{x^3}{x^2-4}.\frac{x+2}{x}-\frac{4x-4}{x-2}\)   \(ĐKXĐ:x\ne0;x\ne2\)

\(A=\frac{x^2}{x-2}-\frac{4\left(x-1\right)}{x-2}\)

\(A=\frac{x^2-4x+4}{x-2}\)

\(A=\frac{\left(x-2\right)^2}{x-2}\)

\(A=x-2\)

vậy \(A=x-2\)

7 tháng 1 2021

ĐKXĐ : \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow x\ne0;x\ne-2\left(1\right)}\)

Ta có P = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)

\(=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)

\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)

\(=\frac{x^2+4x+5}{2\left(x+5\right)}\)

c) P = 1

<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=1\Rightarrow x^2+4x+5=2\left(x+5\right)\)

=> x2 + 4x + 5 - 2x - 10 = 0

=> x2 + 2x - 5 = 0

=> x2 + 2x + 1 - 6 = 0

=> (x + 1)2 = 6

=> \(\orbr{\begin{cases}x+1=\sqrt{6}\\x+1=-\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)(tm (1))

d) P = -1/2

<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=-\frac{1}{2}\)

=> 2(x2 + 4x + 5) = -2(x + 5)

=> 2x2 + 8x + 10 = -2x - 10

=> 2x+ 8x + 10 + 2x + 10 = 0

=> 2x2 + 10x + 20 = 0

=> 2(x+ 5x + 10) = 0

=> x2 + 5x + 10 = 0

=> \(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}=0\)

=> \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\)

=> \(x\in\varnothing\left(\text{Vì }\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\forall x\right)\)

Vậy không tồn tại x để P = -1/2

7 tháng 1 2021

\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)

a) ĐK : x ≠ 0 ; x ≠ -5

b) \(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)

\(=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)

\(=\frac{x^2+4x+5}{2x+10}\)

c) Để P = 1

thì \(\frac{x^2+4x+5}{2x+10}=1\)

=> x2 + 4x + 5 = 2x + 10

=> x2 + 4x + 5 - 2x - 10 = 0

=> x2 - 2x - 5 = 0

=> ( x2 - 2x + 1 ) - 6 = 0

=> ( x - 1 )2 - ( √6 )2 = 0

=> ( x - 1 - √6 )( x - 1 + √6 ) = 0

=> x = 1 + √6 hoặc x = 1 - √6

Cả hai giá trị đều thỏa x ≠ 0 ; x ≠ -5

Vậy x = 1 + √6 hoặc x = 1 - √6

d) Để P = -1/2

thì \(\frac{x^2+4x+5}{2x+10}=\frac{-1}{2}\)

=> 2( x2 + 4x + 5 ) = -2x - 10

=> 2x2 + 8x + 10 + 2x + 10 = 0

=> 2x2 + 10x + 20 = 0

=> 2( x2 + 5x + 10 ) = 0

=> x2 + 5x + 10 = 0 (*)

Ta có : x2 + 5x + 10 = ( x2 + 5x + 25/4 ) + 15/4 = ( x + 5/2 )2 + 15/4 ≥ 15/4 > 0 ∀ x

tức (*) không xảy ra

Vậy không có giá trị của x để P = -1/2

11 tháng 12 2017

Đặt \(\frac{5x+5}{2x^2+2x}=A\)

a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)

        TXĐ:\(x\ne0;x\ne-1\)

b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)

Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)

\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow5=2x\)

\(\Rightarrow x=\frac{2}{5}\)( TM )

8 tháng 12 2018

\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

 \(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)

\(x^2+1\ge1\). dấu = xảy ra khi x2=0

=> x=0

Vậy \(B_{min}\Leftrightarrow x=0\)

ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)

dấu = xảy ra khi \(x+1=0\)

\(\Rightarrow x=-1\)

Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)

8 tháng 12 2018

Để A xác định 

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)

\(\Rightarrow x^2-1\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b, 

26 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)

b. \(A=\frac{x^2+2x}{2x\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)

Để \(A=1\Rightarrow\frac{x-1}{2}=1\Rightarrow x=3\)

Để \(A=-3\Rightarrow\frac{x-1}{2}=-3\Rightarrow x=-5\)

Vậy với x=3 thì A=1 ; với x=-5 thì A=-3

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)