K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2017

\(\Delta=4\left(m+1\right)^2-4\cdot\left(2m-11\right)\cdot1=4m^2+8m+4-8m+44=4m^2+48>0\Rightarrow\)Phương trình có hai nghiệm phân biệt
a) x1\(=\frac{-b-\sqrt{\Delta}}{2a}\)                                x2\(=\frac{-b+\sqrt{\Delta}}{2a}\)
Vì x1 < x2 nên theo yêu cầu đề x1 < 1; x2 > 1
* x2>1  \(\Rightarrow\frac{-b+\sqrt{\Delta}}{2a}>1\Rightarrow\sqrt{\Delta}>2a+b\Rightarrow\sqrt{\Delta}>2a+b\Rightarrow\Delta>\left(2a+b\right)^2=4a^2+4ab+b^2=4+4\cdot2\left(m+1\right)+4\left(m+1\right)^2\)

\(4\left(m+1\right)^2-4\left(2m-11\right)-4\left(m+1\right)^2-4-8\left(m+1\right)>0\Rightarrow-16m+56>0\Rightarrow-16m>-32\Rightarrow m>2\)tương tự với x1 :  m>2
Vậy để pt có 1 nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1 thì m >2
b) x1<2
\(\Rightarrow\frac{-b-\sqrt{\Delta}}{2a}< 2\Rightarrow\sqrt{\Delta}>-\left(4a+b\right)\Rightarrow\Delta>\left(4a+b\right)^2=16a^2+b^2+8ab=16+4\left(m+1\right)^2+8\cdot2\left(m+1\right)\)

\(\Rightarrow4\left(m+1\right)^2-4\left(2m-11\right)-16-16\left(m+1\right)-4\left(m+1\right)^2>0\Rightarrow-24m>-12\Rightarrow m>\frac{1}{2}\)
Tương tự với x2 : m>1/2
Vậy để phương trình có hai nghiệm đều bé hơn 2 thì \(2\ge m>\frac{1}{2}\)

Xin lỗi bạn mình mới học lớp 5 thôi

Thông cảm nha

Xin lỗi bạn nhiều