Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:
\(y_0=\left(2m+3\right)x_0-m+1\)
\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)
Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)
Phương trình hoành độ giao điểm là:
\(x^2+\left(2m-3\right)x+5-4m=2mx-4m+3\)
=>\(x^2+\left(2m-3\right)x+5-4m-2mx+4m-3=0\)
=>\(x^2+x\left(2m-3-2m\right)+5-4m+4m-3=0\)
=>\(x^2-3x+2=0\)
=>\(\left(x-1\right)\left(x-2\right)=0\)
=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Khi x=1 thì \(y=2m\cdot1-4m+3=2m-4m+3=-2m+3\)
Khi x=2 thì \(y=2m\cdot2-4m+3=3\)
Vậy: (dm) và (P) luôn cắt nhau tại điểm A(2;3) cố định
a: Trường hợp 1: m=0
Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)
=>1>0(luôn đúng)
Trường hợp 2: m<>0
\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)
\(=9m^2-4m^2-4m=5m^2-4m\)
Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)
Vậy: 0<=m<4/5
b: Trường hợp 1: m=4
\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)
Trường hợp 2: m<>4
\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)
\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)
\(=4m^2-32m+64-4m^2+36m-80\)
=4m-16
Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)
Vậy: m<=4
Gọi điểm cố định mà đường thẳng :
(d) có phương trình y = (m2 + m) x - 2m2 - 2m đi qua là điểm A ( x0;y0)
Vì điểm A thuộc đường thẳng (d) nên tọa độ điểm A thỏa mãn phương trình đường thẳng d.
Thay tọa độ điểm A vào phương trình đường thẳng (d) ta có :
(m2 + m) x0 - 2m2 - 2m = y0
m2.x0 + mx0 - 2m2 - 2m = y0
(m2x0 - 2m2) + ( mx0 - 2m) = y0
m2(x0 - 2) + m(x0 - 2) = y0
(m2 + m)( x0 - 2) = y0 (1)
Pt(1) luôn đúng với \(\forall\) m \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0-2=0\\y_0=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0=2\\y_0=0\end{matrix}\right.\)
\(\Rightarrow\) A( 2;0)
Kết luận : Vậy điểm cố định mà đường thẳng y = (m2 +m) x - 2m2 - 2m đi qua là điểm A(2;0)
=>x^2-[(m-1)+(m-5)]x+m^2-6m+5<=0
=>x(x-m+1)-(m-5)(x-m+1)<=0
=>(x-m+1)(x-m+5)<=0
=>m-5<=x<=m-1
=>S=[m-5;m-1]
(3;5) là tập con của S
=>m-5>=3 và m-1<=5
=>m>=8 và m<=6
=>Loại