Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)
.
Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)
\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)
* \(t=-1\)
\(\Rightarrow M\left(1;-1\right)\)
*\(t=\dfrac{-5}{3}\)
\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)
Áp dụng công thức:
d(M0 ;∆) = \(\dfrac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}\)
a) d(M0 ;∆) = \(\dfrac{\left|4\cdot3+3\cdot5+1\right|}{\sqrt{4^2+3^2}}=\dfrac{28}{5}\)
b) d(B ;d) = \(\dfrac{\left|3\cdot1-4\cdot\left(-2\right)-26\right|}{\sqrt{3^2+\left(-4\right)^2}}=-\dfrac{15}{5}=\dfrac{15}{5}=3\)
c) Dễ thấy điểm C nằm trên đường thẳng m : C ε m
Áp dụng công thức:
d(M0 ;∆) =
a) d(M0 ;∆) = =
b) d(B ;d) = = = = 3
c) Dễ thấy điểm C nằm trên đường thẳng m : C ε m.
a/ \(\overrightarrow{AB}=\left(0;1\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;0\right)\) và 1 vtcp là \(\overrightarrow{u_{AB}}=\left(0;1\right)\)
- Phương trình tham số AB: \(\left\{{}\begin{matrix}x=4+0.t\\y=1+1.t\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=1+t\end{matrix}\right.\)
- Phương trình tổng quát:
\(1\left(x-4\right)+0\left(y-1\right)=0\Leftrightarrow x-4=0\)
b/ Thay tọa độ x; y từ \(\Delta_1\) vào \(\Delta_2\) ta được:
\(3\left(5+i\right)-2\left(-3+2i\right)-26=0\)
\(\Leftrightarrow-i-5=0\Rightarrow i=-5\)
Thay \(i=-5\) vào pt \(\Delta_1\Rightarrow\left\{{}\begin{matrix}x=5-5=0\\y=-3+2.\left(-5\right)=-13\end{matrix}\right.\)
\(\Rightarrow\Delta_1\) cắt \(\Delta_2\) tại điểm có tọa độ \(\left(0;-13\right)\)
c/ Áp dụng công thức khoảng cách:
\(d\left(M;\Delta\right)=\frac{\left|3.2-4.3+4\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{2}{5}\)
d/ Ta có \(\overrightarrow{n_{\Delta1}}=\left(1;2\right)\) và \(\overrightarrow{n_{\Delta2}}=\left(2;-1\right)\)
\(\Rightarrow\overrightarrow{n_{\Delta1}}.\overrightarrow{n_{\Delta2}}=1.2+2.\left(-1\right)=2-2=0\)
\(\Rightarrow\Delta_1\perp\Delta_2\) hay góc giữa \(\Delta_1\) và \(\Delta_2\) bằng \(90^0\)
Đáp án B
Do M nằm trên trục hoành nên tọa độ điểm M( x; 0)
Khi đó:
Để điểm M cách đều 2 đường thẳng đã cho thì:
Suy ra: 3 x - 6 = 3 x + 6
Suy ra : 3x- 6= - (3x+ 6)
Do đó: x= 0.
Vậy tọa độ điểm M cần tìm là (0; 0)