Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n chia 30 dư 7 thì n+23 chia hết cho 7
n chia 40 dư 17 thì n+23 chia hết cho 7
=> n+23 thuộc BC (30,40)
dạng (mình ko chắc): BC(30,40) . m - 23 = n (m là số tự nhiên, khác 0)
n chia 30 dư 7 thì n+23 chia hết cho 7
n chia 40 dư 17 thì n+23 chia hết cho 7
=> n+23 \(\in\) BC (30,40) = B(BCNN(30;40)) = 120
=> \(n+23=120:k\) (\(k\in\) N*)
=> \(n=\left(120:k\right)-23\). Đó chính là dạng của n.
Trần Sỹ Minh Quân đừng đẩy bài giải của mình xuống. Các bạn **** để bài mình lên đầu đi !
n chia cho 30 dư 7 thì n = 30k + 7 với \(k\in\text{N}\)
n chia cho 40 dư 17 thì n = 40k + 17 với \(k\in\text{N}\)
Ta có:
n : 30 dư 7
n : 40 dư 17
=> n + 23 \(⋮30;40\)
Dạng chung của số tự nhiên n : n = 30k - 23 (k thuộc N*)
n = 40k - 23 (k thuộc N*)
a) Dạng tổng quát của số TN chia cho 30 dư 17 là 30K+17
Dạng tổng quát của số tự nhiên chia cho 40 dư 27 là 40k+27
B) số tự nhiên nhỏ nhất khi chia cho 29 dư 5 là 54(khi k=1)
Số tự nhiên nhỏ nhất khi chia chp 31 dư 28 là 59(khi k =1)
Chúc bạn học tốt
Câu a mình làm là
a chia 30 dư 17 vs
a chia 40 dư 27 thì có đúng không ạ?