K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DB
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MD
0
NP
2
2 tháng 8 2018
Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .
Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)
Giải hệ phương trình ta tìm được :
\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)
Vậy số dư trong phéo chia là \(-x\)
Bài 2 : Mình suy nghĩ sau !
Chúc bạn học tốt
(Nội suy đa thức, nhỉ?)
Để giải dạng bài này anh thường làm như sau:
Bước 1: Tìm coi \(P\left(x\right)\) có giả thiết gì rồi.
Qua các giả thiết đề cho ta biết được \(P\left(-2\right)=0\), \(P\left(1\right)=6\) và \(P\left(-1\right)=4\).
-----
Bước 2: Nội suy.
Viết \(P\left(x\right)\) dưới dạng \(a\left(x+2\right)+b\left(x+2\right)\left(x+1\right)+c\left(x+2\right)\left(x+1\right)\left(x-1\right)+d\).
Ta có \(P\left(-2\right)=d=0\).
Lại có \(P\left(-1\right)=a+d=4\Rightarrow a=4\)
Lại có \(P\left(1\right)=3a+6b+d=6\Rightarrow b=-1\).
Vậy đa thức \(P\left(x\right)=c\left(x+2\right)\left(x+1\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+4\left(x+2\right)\) với \(c\) tuỳ ý