K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

`A(x) + B(x) = 6x^4 - 3x^2 - 5`

`A(x) - B(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9`

Áp dụng bài toán tổng hiệu ta có: 

`A(x) = [(6x^4 - 3x^2 - 5) + (4x^4 - 6x^3 + 7x^2 + 8x - 9)] : 2`

`= (6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9) : 2`

`= (10x^4 - 6x^3 + 4x^2 + 8x - 14) : 2`

`= 5x^4 - 3x^3 + 2x^2 + 4x - 7`

`B(x) = (6x^4 - 3x^2 - 5) - (5x^4 - 3x^3 + 2x^2 + 4x - 7)`

`= 6x^4 - 3x^2 - 5 - 5x^4 + 3x^3 - 2x^2 - 4x + 7`

`= x^4 + 3x^3 - 5x^2 - 4x + 2`

Vậy ....

30 tháng 7 2024

\(2A\left(x\right)=\left(6x^4-3x^2-5\right)+\left(4x^4-6x^3+7x^2+8x-9\right)\\ =\left(6x^4+4x^4\right)-6x^3+\left(-3x^2+7x^2\right)+8x+\left(-5-9\right)\\ =10x^4-6x^3+4x^2+8x-14\\ =>A\left(x\right)=5x^4-3x^3+2x^2+4x-7\)

\(=>B\left(x\right)=\left(6x^4-3x^2-5\right)-A\left(x\right)\\ =\left(6x^4-3x^2-5\right)-\left(5x^4-3x^3+2x^2+4x-7\right)\\ =\left(6x^4-5x^4\right)+3x^3+\left(-3x^2-2x^2\right)-4x+\left(-5+7\right)\\ =x^4+3x^3-5x^2-4x+2\)

6 tháng 8 2015

=> 2 f(x) = 6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9

               = 10x^4 - 6x^3 + 4x^2 + 8x - 14 

=> 2.f ( x ) =  2 ( 5x^4 - 3x^3 + 2x^2 + 4x - 7 )

=> ( fx) = 5x^4 - 3x^3 + 2x^2 + 4x - 7 

g(x) tự tìm 

6 tháng 8 2015

ta có:

f(x) + g(x) = 6x^4 - 3x^2 - 5 

 

f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9

công hai vế lại với nhau ta được:

f(x)+g(x)+f(x)-g(x)=6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9

=>2f(x)=6x4+4x4-6x3-3x2+7x2+8x-5-9

2f(x)=10x4-6x3+4x2+8x-14

2f(x)=2.(5x4-3x3+2x2+4x-7)

=>f(x)=5x4-3x3+2x2+4x-7

=>g(x)=6x^4 - 3x^2 - 5 -(5x4-3x3+2x2+4x-7)

=6x4-3x2-5-5x4+3x3-2x2-4x+7

=6x4-5x4+3x3-3x2-2x2-4x-5+7

=x4+3x3-5x2-4x+2

 

a) dễ tự làm

b) A(x) có bậc 6

      hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3

B(x) có bậc 6

hệ số: 2 ; -5 ; 3 ; 4 ; 7

c) bó tay

d) cx bó tay

24 tháng 5 2021

a) A(x) = 6x3-x(x+2)+4(x+3)

            = 6x3-x2+2x+12

B(x) = -x(x+1)-(4-3x)+x2(x-2)

        = -(x2)-x-4+3x+x3-2x2

        = x3-3x2+2x-4

b) C(x) = 6x3-x2+2x+12+x3-3x2+2x-4-7x3+4x2=0

            ⇒ 4x+8=0

            ⇒ 4x = -8

            ⇒ x = -2

Vậy nghiệm của đa thức C(x) là 2

26 tháng 4 2021

 

A(x)=4x4−6x2−7x3−5x−6

B(x)=−5x2+7x3+5x+4−4x4

 

a/ - Tính:

 M(x)=A(x)+B(x)

M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4

M(x)=x2−2

- Tìm nghiệm: 

M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2

b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)

C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)

C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4

C(x)=8x4−14x3−x2−10x−10

7 tháng 3 2022

cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4

a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)

b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)

17 tháng 6 2019

Bài 1 ( a )

\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)

\(=-x^3-2x^2+5x-7\)

\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)

\(=-3x^4+x^3+10x^2-7\)

17 tháng 6 2019

Bài 1 ( b )

\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)

\(=3x^4-2x^2+15x-14\)

\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)

\(=-3x^4-2x^3-5x\)

25 tháng 4 2021

 a) G(x) = 2x5-4x4-10x3+3x2-4x-8

      H(x) = x5-2x4-5x3+x2+7x-4

b) G(x)+H(x)=3x5-6x4-15x3+4x2+3x-12

    G(x)-H(x) =x5-2x4-5x3+2x2-11x-4

c) G(x) = 2H(x)

2x5-4x4-10x3+3x2-4x-8=2( x5-2x4-5x3+x2+7x-4)

2x5-4x4-10x3+3x2-4x-8-2( x5-2x4-5x3+x2+7x-4)=0

2x5-4x4-10x3+3x2-4x-8-2x5+4x4+10x3-2x2-14x+8=0

x2-18x=0

x(x-18)=0

x=0 hoặc x-18=0

                x=18

 

29 tháng 5 2021

a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12

= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x

= 6x4 - 17 + 6x3 - 5x

= 6x4 + 6x3 - 5x - 17

B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2

= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2

= 4x4 + 6x3 - 5x - 15 - 2x2

= 4x4 + 6x3 - 2x2 - 5x - 15

b) C(x) = A(x) - B(x)

=  6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)

= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15

= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2

= 2x4 - 2 + 2x2 

= 2x4 + 2x2 - 2

11 tháng 4 2019

a. Rút gọn đa thức và sắp xếp theo thứ tự giảm dần của biến..

\(A\left(x\right)=13x^4+3x^2+15x+7x^2-10x^4-7x-6-8x+15\)

\(=\left(13x^4-10x^4\right)+\left(3x^2+7x^2\right)+\left(15x-7x-8x\right)+\left(15-6\right)\)

\(=3x^4+10x^2+9.\)

\(B\left(x\right)=5x^4+10-5x^2-18+3x-10x^2-3x-4x^4\)

\(=\left(5x^4-4x^4\right)+\left(-5x^2-3x^2\right)+\left(3x-3x\right)+\left(10-18\right)\)

\(=x^4-8x^2-8\)

b. Tính M = A(x) + B(x) ; N = A(x) - B(x)

\(M=A\left(x\right)+B\left(x\right)=\left(3x^4+10x^2+9\right)+\left(x^4-8x^2-8\right)\)

\(=\left(3x^4+x^4\right)+\left(10x^2-8x^2\right)+\left(10-8\right)\)

\(=4x^4+2x^2+2\)

\(N=A\left(x\right)-B\left(x\right)=\left(3x^4+10x^2+9\right)-\left(x^4-8x^2-8\right)\)

\(=3x^4+10x^2+9-x^4+8x^2+8\)

\(=\left(3x^4-x^4\right)+\left(10x^2+8x^2\right)+\left(9+8\right)\)

\(=2x^4+18x^2+17\)