K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

12 tháng 12 2018

a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k  nên 7k là hợp số ( không thỏa mãn).

Với k = 1 thì  7k = 7 là số nguyên tố.

Vậy k = 1.

b, k chia cho 5 có thể dư 0,1,2,3,4.

Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).

Với k chia cho 5 dư 2 thì k+85 và k+8 > 5 nên k+8 là hợp số ( loại).

Với k chia cho 5 dư 3 thì k+125 và k+12 > 5 nên k+12 là hợp số ( loại).

Với k chia cho 5 dư 4 thì k+65 và k+6 > 5 nên k+6 là hợp số ( loại).

Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )

Với k = 5. Thử thấy 5,11,13,17,19  đều là số nguyên tố.

Vậy k = 5.

29 tháng 6 2015

a) Vì k là số tự nhiên nên :

- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.

- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.

- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.

                Vậy k = 1 thỏa mãn đề bài.

29 tháng 6 2015

a) Điều kiện: k>0

  Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.

  7k có các ước:  1,k và 7 (vẫn còn nếu k là hợp số)

 Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài

b) Từ đề trên thì chắc chắn a không là số chẵn.

 Nếu k có dạng 3q thì:

           + k+6 chia hết cho 3 (loại)

   Nếu k có dạng 3q+1 thì 

          + k+14 = 3q + 15 chia hết cho 3 (loại)

 Nếu k có dạng 3q+2 (>5)thì:

   + Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)

   + Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)

Như vậy thì một trong các số trên đề sẽ là hợp số

  Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1

 => k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)

4 tháng 1 2016

a) 7k là số nguyên tố

7k chia hết cho 7

7 là số nguyên tố

< = > 7k = 7

k = 1

b) 2k là số nguyên tố

Số ước của k là k + 1

Số nguyên tố có 2 ước 

< = > k + 1 = 2

k = 2 - 1  = 1

Vậy k = 1

4 tháng 1 2016

Ai li-ke cho mình đi để khỏi bị trừ điểm với !

15 tháng 11 2021

Bài 10:

\(ƯCLN\left(a,b\right)=14\Leftrightarrow\left\{{}\begin{matrix}a=14k\\b=14q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ ab=5488\Leftrightarrow196kq=5488\\ \Leftrightarrow kq=28\)

Mà \(\left(k,q\right)=1\Leftrightarrow\left(k;q\right)\in\left\{\left(4;7\right);\left(7;4\right);\left(1;28\right);\left(28;1\right)\right\}\)

\(\Leftrightarrow\left(a;b\right)\in\left\{\left(56;98\right);\left(98;56\right);\left(14;392\right);\left(392;14\right)\right\}\)

15 tháng 11 2021

Bài 12:

\(n+20⋮n+5\\ \Leftrightarrow n+5+15⋮n+5\\ \Leftrightarrow n+5\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

Mà \(n\in N\Leftrightarrow n+5\in\left\{5;15\right\}\)

\(\Leftrightarrow n\in\left\{0;10\right\}\)

\(a,12⋮x-1\)

\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Ta lập bảng xét giá trị 

x - 1             1          -1            2         -2           3          -3          4          -4          12            -12

x                   2            0            3        -1          4          -2           5         -3           13            -11

\(c,x+15⋮x+3\)

\(x+3+12⋮x+3\)

\(12⋮x+3\)

Tự lập bảng , lười ~~~

\(d,\left(x+1\right)\left(y-1\right)=3\)

Ta lập bảng 

x+11-13-3
y-13-31-1
x202-4
y4-220

i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )

\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)

Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC ) 

:>> Hc tốt 

19 tháng 11 2021

bạn cho như thế này lm sao giải hết cho bn đc