Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k nên 7k là hợp số ( không thỏa mãn).
Với k = 1 thì 7k = 7 là số nguyên tố.
Vậy k = 1.
b, k chia cho 5 có thể dư 0,1,2,3,4.
Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).
Với k chia cho 5 dư 2 thì k+8 ⋮ 5 và k+8 > 5 nên k+8 là hợp số ( loại).
Với k chia cho 5 dư 3 thì k+12 ⋮ 5 và k+12 > 5 nên k+12 là hợp số ( loại).
Với k chia cho 5 dư 4 thì k+6 ⋮ 5 và k+6 > 5 nên k+6 là hợp số ( loại).
Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )
Với k = 5. Thử thấy 5,11,13,17,19 đều là số nguyên tố.
Vậy k = 5.
a) Vì k là số tự nhiên nên :
- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài.
a) Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.
7k có các ước: 1,k và 7 (vẫn còn nếu k là hợp số)
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) Từ đề trên thì chắc chắn a không là số chẵn.
Nếu k có dạng 3q thì:
+ k+6 chia hết cho 3 (loại)
Nếu k có dạng 3q+1 thì
+ k+14 = 3q + 15 chia hết cho 3 (loại)
Nếu k có dạng 3q+2 (>5)thì:
+ Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)
+ Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)
Như vậy thì một trong các số trên đề sẽ là hợp số
Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1
=> k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)
a) 7k là số nguyên tố
7k chia hết cho 7
7 là số nguyên tố
< = > 7k = 7
k = 1
b) 2k là số nguyên tố
Số ước của k là k + 1
Số nguyên tố có 2 ước
< = > k + 1 = 2
k = 2 - 1 = 1
Vậy k = 1
Bài 10:
\(ƯCLN\left(a,b\right)=14\Leftrightarrow\left\{{}\begin{matrix}a=14k\\b=14q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ ab=5488\Leftrightarrow196kq=5488\\ \Leftrightarrow kq=28\)
Mà \(\left(k,q\right)=1\Leftrightarrow\left(k;q\right)\in\left\{\left(4;7\right);\left(7;4\right);\left(1;28\right);\left(28;1\right)\right\}\)
\(\Leftrightarrow\left(a;b\right)\in\left\{\left(56;98\right);\left(98;56\right);\left(14;392\right);\left(392;14\right)\right\}\)
Bài 12:
\(n+20⋮n+5\\ \Leftrightarrow n+5+15⋮n+5\\ \Leftrightarrow n+5\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Mà \(n\in N\Leftrightarrow n+5\in\left\{5;15\right\}\)
\(\Leftrightarrow n\in\left\{0;10\right\}\)
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt