Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=1+3+3^2+...+3^{125}\\ \Rightarrow3A=3+3^2+3^3+...+3^{126}\\ \Rightarrow2A=3^{126}-1\\ \Rightarrow A=\dfrac{3^{126}-1}{2}\\ c,2A=3^{2x}-1\\ \Rightarrow3^{126}-1=3^x-1\\ \Rightarrow x=126\)
\(d,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{124}+3^{125}\right)\\ A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{124}\left(1+3\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{124}\right)\\ A=4\left(1+3^2+...+3^{124}\right)⋮4\)
suy ra : (2+2^2)+(2^3+2^4)+,,,,,,,,,,+(2^99+2^100)
2(1+2)+2^3(1+2)+.....+2^9(1+2)
2.3+2^3.3+..........+2^9.3 CHIA HẾT CHO 3
ta có :(2+2^2+2^3+2^4)+...............+(2^97+2^98+2^99+2^100)
2(1+2+2^2+2^3)+...............+2^97(1+2+2^2+2^3)
2.15+..............+2^97.15 chia hết cho 15
do A chia hết cho 15 tức là A chia hết cho 5
A CÓ TẬN CÙNG LÀ 0 HOẠC 5
Xet 1 so tu nhien khi chia cho 10
=> Co the xay ra 10 truong hop ve so du (1)
Ma cac so tu nhien tu 11 den 21 gom (21-)+1=11 so
Biet moi so cong voi dung so thu tu cua no duoc 1 tong
=> co 11 tong , moi tong deuco gia tri la 1 so tu nhien (2)
Tu (1) va (2) => trong 11 tong tren chac chan co 2 tong co cung so du khi chia cho 11
Vay hai tong co hieu chia het cho 10
**** nhe
a) 57^1999 = 57^1996+3 = 57^1996.57^3 = 57^4.499.57^3
= (57^4)^499.57^3 = (...1)^499.57^3 = (...1).185193 = (...3)
Vậy 57^1999 có chữ số tận cùng là 3