Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
931999
Ta có:
93 x 93 = ......9
93 x 93 x 93 = .......7
93 x 93 x 93 x 93 = .........1
93 x 93 x 93 x 93 x 93 = ...........3
93 x 93 x 93 x 93 x 93 x 93 = .......9
Mà 1999 : 6 = 333 ( dư 1 )
Vậy chữ số tận cùng của 931999 là: 7
bạn dưới làm sai rồi
931= ..3
932 = 93 . 93 =... 9
933 =93.93.93=...7
934 = 93.93.93.93=...1
935= 93.93.93.93.93 =...3
936=93.93.93.93.93.93=...9
..............................
chu kỳ này chỉ có 4 lần nên ta có:
1999:4=499 (dư 3)
=> chữ số tận cùng là 1
a.Theo đề ta có:
4^5^6^7
=4^5^(...6) (vì 6 khi lũy thừa lên thì tận cùng không đổi)
=4^(...5) (vì 5 khi lũy thừa lên thì tận cùng không đổi)
=(...4) (vì 4 khi lũy thừa một số mũ lẻ thì tận cùng không đổi)
Vậy 4^5^6^7 có tận cùng là 4
b.
Ta có:
9 nếu lũy thừa một số mũ lẻ thì tận cùng của nó sẽ là 9.
Áp dụng vào bài, ta có:
9^9^9^9
= 9^9^(...9)
= 9^(...9)
= (...9)
Vậy 9^9^9^9 có tận cùng là 9.
(Nhớ cho mình đúng nha)
Các chữ số có tận cùng là a khi lũy thừa bậc 4k + 1 thì chữ số tận cùng không thay đổi.
Nên A có chữ số tận cùng là chữ số tận cùng của tổng sau:
\(1+2+3+...+18=\frac{18\cdot19}{2}=9\cdot19=\left(...1\right)\\ \)
Vậy A có tận cùng là chữ số 1.
a) Ta thấy 11! = 1 . 2 . ... 10 . 11 có thừa số 10 nên có tận cùng là 0
tương tự 17! = 1 . 2 ... 10 ... 17 có thừa số 10 nên có tận cùng là 0
b) tích 2 . 4 . 6 ... 98 có tận cùng là 0
tích 1 . 3 . 5 . 7 ... 99 có tận cùng là 0
suy ra : 2 . 4 . 6 ... 98 + 1 . 3 . 5 . 7 ... 99 có tận cùng là 5
a, chữ số tận cùng của 11!=0 ; 17!=0
b, tận cùng của tổng là 5