Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Theo đề ta có:
4^5^6^7
=4^5^(...6) (vì 6 khi lũy thừa lên thì tận cùng không đổi)
=4^(...5) (vì 5 khi lũy thừa lên thì tận cùng không đổi)
=(...4) (vì 4 khi lũy thừa một số mũ lẻ thì tận cùng không đổi)
Vậy 4^5^6^7 có tận cùng là 4
b.
Ta có:
9 nếu lũy thừa một số mũ lẻ thì tận cùng của nó sẽ là 9.
Áp dụng vào bài, ta có:
9^9^9^9
= 9^9^(...9)
= 9^(...9)
= (...9)
Vậy 9^9^9^9 có tận cùng là 9.
(Nhớ cho mình đúng nha)
Ta có : 34 = 81
274 =...1
9 x 813 = 9 x ...1 = ....9
=> 34 x 274 + 9 x 814 = 81 x...1 +...9
= ....1 = ....9
= ....0
Chữ số tận cùng là 0, k cho mình nhé :)
a, ( 44 - x ) / 3 = ( x - 12 ) / 5
=> 5 ( 44 - x ) = 3 ( x - 12 )
220 - 5x = 3x - 36
- 5x - 3x = - 36 - 220
- 8 x = - 256
x = 32
b , ( 3 - x ) / 4 = ( 2x + 7 ) / 5
=> 5 ( 3 - x ) = 4 ( 2x + 7 )
15 - 5x = 8 x + 28
- 5 x - 8 x = 28 - 15
- 13 x = 13
x = -1
a, \(\frac{\left(44-x\right)}{3}=\frac{\left(x-12\right)}{5}\)
=> (44 - x) . 5 = (x - 12) . 3
=> 44 - x . 5 = x - 12 .3
=> 44 - x . 5 = x - 36
=> x5 + x = - 36 - 44
=> x5 + x = - 80
=> x . (5 + 1) = - 80
=> x . 6 = - 80
=> x = - 80 : 6
=> x = - 13,3
b, \(\frac{\left(3-x\right)}{4}=\frac{\left(2x+7\right)}{5}\)
=> (3 - x) . 5 = (2x + 7) . 4
=> 3 - x . 5 = 2x + 7 . 4
=> 3 - x . 5 = 2x + 28
=> -x . 5 + 2x = 28 - 3
=> -x . 5 + 2x = 25
=> x . 5 + 2x = 25
=> x . (5 + 2) = 25
=> x . 7 = 25
=> x = 25 : 7
=> x = 3,57
Ta xét theo quy luật:
(_3)4n = _1 ; (_3)4n+1 = _3; (_3)4n+2 = _9; (_3)4n+3 = _7 ;
(_7)4n = _1 ; (_7)4n+1 = _7; (_3)4n+2 = _9; (_3)4n+3 = _3 .
Ta thấy 2009 = 502 x 4 + 1 nên 32009 có tận cùng là 3.
2010 = 502 x 4 + 2 nên 72010 có tận cùng là 9.
2011 = 502 x 4 + 3 nên 132011 có tận cùng là 7.
Vậy M có chữ số tận cùng giống với chữ số tận cùng của tích : 3 x 9 x 7 = 189.
Tóm lại M có chữ số tận cùng là 9.
Ta có 32009 = 32008.3 = (34)502.3 = (...1)502.3 =(...1) . 3 = (...3)
72010 = 72008.49 = (74)502.49 = (...1)502.49 = (...1).49 = (...9)
132011 = 132008.133 = (134)502.(...7) = (...1)502.(...7) = (...1).(...7) = (...7)
Khi đó 32009.72010.132011 = (...3).(...9).(...7) = (...9)
Vậy chữ số tận cùng của tích trên là 9
\(=3^4.\left(3^3\right)^4+3^2.\left(3^4\right)^3=3^{16}+3^2.\left(3^4\right)^3=\left(3^4\right)^4+3^2.\left(3^4\right)^3\)
\(3^4\) có tận cùng là 1 \(\Rightarrow\left(3^4\right)^4\) có tận cùng là 1
\(3^4\)có tận cùng là 1 \(\Rightarrow\left(3^4\right)^3\) có tận cùng là 1 \(\Rightarrow3^2.\left(3^4\right)^3\) có tận cùng là 9
=> Biểu thức có tận cùng là 0
\(b,\sqrt{36}.\sqrt{\dfrac{25}{26}}+\dfrac{1}{4}\\ =\sqrt{6^2}.\sqrt{\left(\dfrac{5}{4}\right)^2}+\dfrac{1}{4}\\=6.\dfrac{5}{4}+\dfrac{1}{4}=\dfrac{30}{4}+\dfrac{1}{4}=\dfrac{31}{4}\)
\(c,\sqrt{\dfrac{4}{81}}:\sqrt{\dfrac{25}{81}}-1\dfrac{2}{5}\\ =\sqrt{\left(\dfrac{2}{9}\right)^2}:\sqrt{\left(\dfrac{5}{9}\right)^2}-\dfrac{7}{5}\\ =\dfrac{2}{9}:\dfrac{5}{9}-\dfrac{7}{5}\\ =\dfrac{2}{9}.\dfrac{9}{5}-\dfrac{7}{5}=\dfrac{2}{5}-\dfrac{7}{5}\\ =-1\)
\(d, 0,1.\sqrt{225}.\sqrt{\dfrac{1}{4}}\\ =\dfrac{1}{10}.\sqrt{15^2}.\sqrt{\left(\dfrac{1}{2}\right)^2}\\ =\dfrac{1}{10}.15.\dfrac{1}{2}=\dfrac{3}{5}\)
\(e, \dfrac{3^{25}}{9^3.3^{16}}\\ =\dfrac{3^{25}}{\left(3^2\right)^3.3^{16}}\\ =\dfrac{3^{25}}{3^6.3^{16}}\\ =\dfrac{3^{25}}{3^{22}}\\ =3^3=27\)
\(7^{2000}=\left(7^4\right)^{500}\)
\(=\left(....1\right)^{500}\)
\(=\left(...1\right)\)
Vậy chữ số tận cùng của 72000 là 1
Tham khảo nhé~
Ta có \(2000=100k\)
\(\Rightarrow7^{2000}=7^{100k}\)
Theo tính chât ta có , các số 1 ; 3 ; 7 ;9 mũ 100k có chữ số tận cùng là 1
=> 72000 có chữ số tận cùng là 1