Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3^15 đồng dư với 7 (modul 10)
3^10 đồng dư với 9 (modul 10)
3^100 đồng dư với 1 (modul 10)
3^2000 đông dư với 1 (modul 10)
Vậy 3^15.3^2000 đông dư với 7.1=7 (modul 10)
Suy ra chữ số tận cùng của 3^2015 là 7
Đặt \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
nên \(3S=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(\Rightarrow3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}=\frac{9^{25}-1}{2}\)
Nhận xét: 9 lũy thừa chỉ có 2 số tận cùng là 1 và 9 với lũy thừa chẵn là 1 và lẻ là 9
Vậy, \(9^{25}\)là lũy thừa lẽ nên có chữ số tận cùng là 9
Ta có: \(\frac{9-1}{2}=4\)nên chữ số tận cùng của \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)là \(4\)
Gọi A =1+3+32+....+349(1)
=>3A=3+32+....+350(2)
=>2A=350-1 [Lấy (2)-(1)]
=>2A=34.16.3.3-1
=>2A=(...1).9-1
=>A=(...8):2
=>A=...4
vậy cs tận cùng của A là 4
Ta có 1!=1
2!=2
3!=6
4!=24
Nhưng 5!=...0(vì trong đó có tích của 5x2 nên co c/s tận cùng là 0) nên từ 5!,6!,7!,..n! đều có tận cùng là 0
=>A=1+2+6+24+..0+..0+..0+....+...0
A=...3
Vậy chữ số tận cùng của A là 3
(392)94= (....1)94 = .....1
Chữ số tận cùng của (392)94 là 1
(392)94=(...1)94=....1
Vậy chữ số tận cùng của (392)94 là 1