Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12^2015= 3^2015.4^2015= 3^(2012+3).4^(2012+3)= 3^(4.503).3^3.4^(4.503).4^3= (...1).9.(...6).64=(...9).(...4)= (...6)
vậy có tận cùng là 6
a, chữ số tận cùng của 122015 là 8
b, chữ số tận cùng của 132015 là 7
c, chữ số tận cùng của tổng đó là 0
nếu thấy đúng bạn tick cho mình nhé , c'mơn bạn
https://olm.vn/hoi-dap/detail/6842971095.html?pos=5033879013
bài 1
Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N
=> 9^ 2n-1
= máy tính bỏ túi là xong
bài 2
a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)
98^ 4=(...6)
97^ 3=97^ 2 .97=(...9)(..7)=(..3)
96 ^2=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
bài 3
A = 405 n + 2^405 + m2
405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
bài 4
a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4
\(B=5^{2016}+2^{2017}\)
\(B=\left(...5\right)+\left(...4\right)^{1008}.2\)
\(B=\left(...5\right)+\left(...6\right)^{504}.2\)
\(B=\left(...5\right)+\left(...2\right)=\left(...7\right)\)
Vậy B có chữ số tận cùng là 7
\(C=7^{2015}+5\cdot2^{100}\)
\(C=\left(...9\right)^{1007}\cdot7+5\cdot\left(...4\right)^{50}\)
\(C=\left(...1\right)^{503}\cdot9\cdot7+5\cdot\left(...6\right)^{25}\)
\(C=\left(...3\right)+\left(...0\right)=\left(...3\right)\)
Vậy C có chữ số tận cùng là 3
\(D=405^n+2^{405}\)
\(D=\left(...5\right)+\left(...4\right)^{202}\cdot2\)
\(D=\left(...5\right)+\left(...6\right)^{101}\cdot2\)
\(D=\left(...5\right)+\left(...2\right)=\left(...7\right)\)
Vậy D có chữ số tận cùng là 7