Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M=3^{2017}-3^{2016}+3^{2015}-....+3-1$
$3M=3^{2018}-3^{2017}+3^{2016}-...+3^2-3$
$M+3M=3^{2018}-1$
$4M=3^{2018}-1$
$16M=4(3^{2018}-1)$
Ta thấy: $3^4=81\equiv 1\pmod {10}$
$\Rightarrow 3^{2018}=(3^4)^{504}.3^2\equiv 1^{504}.3^2\equiv 9\pmod {10}$
$\Rightarrow 16M=4(3^{2018}-1)\equiv 4(9-1)\equiv 32\equiv 2\pmod {10}$
Vậy $16M$ tận cùng là $2$
2n luôn có tận cùng là 2. Vậy cái tổng trên có tận cùng là 6. Còn 2 chữ số tận cùng thì chỉ nằm trong 16;26;...;96. Có 9 phương án bạn giải toán casio thì thử từng cái một xem cái nào đúng.
2n luôn có tận cùng là 2. Vậy cái tổng trên có tận cùng là 6. Còn 2 chữ số tận cùng thì chỉ nằm trong 16;26;...;96. Có 9 phương án bạn giải toán casio thì thử từng cái một xem cái nào đúng nhé !
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
a, 57^2015=57^2012.57^3=...1 x ...3=...3
Vậy 57^2015 có chữ số tận cùng là 3
b, 93^2016=...1
Vậy 93^2016 có chữ số tận cùng là 1
Giải thích nha: vì ...7^3=...3 (quá dễ nhá);các số có tận cùng là 3,7,9 thì khi nâng lên lũy thừa 4n thì có chữ số tận cùng là 1
GỬI NGHÌN !!!!!!!!!!!!!!
1, cho tam giác ABC , góc B= 60 , AB= 6 cm, BC= 14 cm . trên BC lấy điểm D sao cho góc BAD = 60 độ . gọi H là trung điểm BD
a) tính độ dài HD
b) chứng minh rằng tam giác DAC can
c) tam giác ABC là tam giác gì ?
d) CMR : AB^2 + CH^2 = AC^2 + BH ^2
2,tim x,y,zbiết :
a) 3(x-2) - 4(2x+1) - 5(2x+3) = 50
b) $$ :( 4- 1/3 I 2x +1I = 21/22
c) 3z-2y /37 = 5y- 3z / 15= 2z- 5x/2 va 10x -3y - 2z = -4
\(3^{2015}=3^{4.503+3}=\left(3^4\right)^{503}.27=\left(...1\right).27=\left(...7\right)\)
\(7^{2016}=\left(7^4\right)^{504}=\left(...1\right)^{504}=\left(...1\right)\)
\(9^{2017}=\left(9^2\right)^{1008}.9=\left(...1\right).9=\left(...9\right)\)
\(19^{2015}=\left(19^2\right)^{1007}.19=\left(...1\right)^{1007}.19=\left(...1\right).19=\left(...9\right)\)
=> 32015.72016.92017.192015 = \(\left(...7\right).\left(...1\right).\left(...9\right).\left(...9\right)=\left(...7\right)\)