K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:
$2x^2+y^2+2xy-6x-2y=8$

$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$

$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$

Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại) 

Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)

Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$

$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$

TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$

TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$

TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$

Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)

28 tháng 10 2023

scp là gì vậy bạn

NV
8 tháng 1

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)

Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)

\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;0;1\right\}\)

- Với \(y=-1\) thay vào (1):

\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)

- Với \(y=1\) thay vào (1):

\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

- Với \(y=0\)

\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)

NV
24 tháng 2 2021

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~