Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-3;y-5\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-2\right);\left(2;12\right);\left(-4;6\right);\left(10;4\right)\right\}\)
2xy+x = 5y
3xy =5y
3x =5y : y= 5 .y :y
3x =5:3 = 5/3
NHỚ THANKS TUI NHA
\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)
mà `y in ZZ;x in ZZ`
`=>y in ZZ;2x-3 in ZZ`
`=>y;2x-3` thuộc ước nguyên của `12`
`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`
Ta có bảng sau :
`y` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`2x-3` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`x` | `1` | `1/2` | `0` | `-1/2` | `-3/2` | `-9/2` | `2` | `5/2` | `3` | `7/2` | `9/2` | `15/2` |
Vì `x;y in ZZ`
nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`
\(2x\left(y-1\right)+y-1=11\Leftrightarrow\left(2x+1\right)\left(y-1\right)=11\)
\(\Rightarrow2x+1;y-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2x+1 | 1 | -1 | 11 | -11 |
y-1 | 11 | -11 | 1 | -1 |
x | 0 | -1 | 5 | -6 |
y | 12 | -10 | 2 | 0 |
x, y nguyên thì |x+4| và |y-2| cũng là số nguyên.
+) vì |x+4| và |y-2| luôn lớn hơn hoặc bằng 0 nên để thỏa mãn bài toán thì chỉ xảy ra các trường hợp sau
+) TH1: |x+4| = 3 và |y-2| = 0 <=> x = -1 hoặc x = -7
và y = 2.
ta có các cặp (x,y): (-1;2) , (-7; 2)
+) TH2: |x+4| = 2 và |y-2| = 1 <=> x = -2 hoặc x = -6 và y = 3 hoặc y = 1
ta có các cặp (x,y): (-2;1) , (-2; 3) , (-6;1) , (-6;3)
+) TH3: |x+4| = 1 và |y-2| = 2 <=> x = -3 hoặc x = -5 và y = 4 hoặc y = 0
ta có các cặp (x,y): (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4)
+) TH4: |x+4| = 0 và |y-2| = 3 <=> x = -4 và y = -1 hoặc y = 5
ta có các cặp (x,y): (-4;-1) , (-4; 5)
Vậy có các cặp (x;y) thỏa mãn điều kiện là:(-1;2) , (-7; 2), (-2;1) , (-2; 3) , (-6;1) , (-6;3), (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4), (-4;-1) , (-4; 5)
\(xy+3x+y+3=7\)
\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=7\)
Mà \(x,y\) là số nguyên nên \(x+1,y+3\) là các ước của \(7\).
Ta có bảng giá trị:
x+1 | -7 | -1 | 1 | 7 |
y+3 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -4 | -10 | 4 | -2 |
`<=> 4xy-2x-2y=4`
`<=> 2x(2y-1)-2y+1=5`
`<=> (2x-1)(2y-1)=5`
`<=> 2x-1 in Ư(5)`.
`<=>` \(\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=2\\x=0\\x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có nghiệm là: `0; -2; 2; 3`.