Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
\(A=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2=3\)
\(\Rightarrow A_{min}=3\) khi \(x=y=z=1\)
Answer:
\(5x+53=2xy+8y^2\)
\(\Rightarrow2\left(5x+53\right)=2\left(2xy+8y^2\right)\)
\(\Rightarrow10x+106=4xy+16y^2\)
\(\Rightarrow10x-4xy=16y^2-106\)
\(\Rightarrow x=\frac{16y^2-106}{10-4y}\)
\(\Rightarrow x=\frac{\left(16y^2-100\right)-6}{10-4y}\)
\(\Rightarrow x=\frac{-\left(10-4y\right)\left(4y+10\right)}{10-4y}-\frac{6}{10-4y}\)
\(\Rightarrow x=-4y-10-\frac{6}{10-4y}\)
Để cho x và y thuộc Z thì 6 chia hết cho 10 - 4y
\(\Rightarrow10-4y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=1\\10-4y=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4y=9\left(l\right)\\4y=11\left(l\right)\end{cases}}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=2\\10-4y=-2\end{cases}}\Rightarrow\orbr{\begin{cases}4y=8\\4y=12\end{cases}}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=-21\\y=3\Rightarrow x=-19\end{cases}}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=3\\10-4y=-3\end{cases}}\Rightarrow\orbr{\begin{cases}4y=7\left(l\right)\\4y=13\left(l\right)\end{cases}}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=6\\10-4y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}4y=4\\4y=16\end{cases}}\Rightarrow\orbr{\begin{cases}y=1\Rightarrow x=-15\\y=4\Rightarrow x=-25\end{cases}}\)
Ta có: \(x+y+z=0\)
nên \(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
Ta có: \(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}\)
\(=\dfrac{-z}{y}\cdot\dfrac{-x}{z}\cdot\dfrac{-y}{x}\)
\(=\dfrac{-\left(x\cdot y\cdot z\right)}{x\cdot y\cdot z}=-1\)
a) Hàm số \(y = 4x + 2\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = 4;b = 2\).
b) Hàm số \(y = 5 - 3x = - 3x + 5\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 3;b = 5\).
c) Hàm số \(y = 2 + {x^2}\) không phải là hàm số bậc nhất vì không có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\).
d) Hàm số \(y = - 0,2x\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = - 0,2;b = 0\).
e) Hàm số \(y = \sqrt 5 x - 1\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = \sqrt 5 ;b = - 1\).
a) \(y=4x+2\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)
b) \(y=5-3x\Rightarrow\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.\)
c) \(y=2+x^2\) không phải hàm số bậc nhất.
d) \(y=0,2x\Rightarrow\left\{{}\begin{matrix}a=-0,2\\b=0\end{matrix}\right.\)
e) \(y=\sqrt[]{5}x-1\Rightarrow\left\{{}\begin{matrix}a=\sqrt[]{5}\\b=-1\end{matrix}\right.\)
Đại lượng y là hàm số của đại lượng x. Bởi vì với mỗi giá trị của x chỉ tìm được duy nhất một giá trị tương ứng của y
Dễ mà bạn
X + y = 5 => x = 5 - y
=> \(\left(5-y\right)^2+y^2=53\)
=>\(25-10y+2y^2=53\)
Đễn đây bạn tìm đc y nhờ giải pt bậc 2 và để tìm x bạn thay y vào " x = 5-y"
\(x^2+y^2=53\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=53\)
\(\Leftrightarrow-2xy=28\)
\(\Leftrightarrow xy=-14\)
Do đó ta có các cặp (x;y) là: (-1;14); (14;-1); (-14;1); (-1;14); (-7;2); (2;-7); (7;-2);(-2;7)