Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+2y-xy=0\Leftrightarrow\left(2x-xy\right)-\left(4-2y\right)=-4\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-4\)
\(\Leftrightarrow\left(x-2\right)\left(2-y\right)=-4\)
x-2 | -1 | 1 | -2 | 2 | -4 | 4 |
2-y | 4 | -4 | 2 | -2 | 1 | -1 |
x | 1 | 3 | 0 | 4 | -2 | 6 |
y | -2 | 6 | 0 | 4 | 1 | 3 |
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
a) x.y - x - y + 1 = 0
=> x.(y - 1) - (y - 1) = 0
=> (x - 1).(y - 1) = 0
=> x - 1 = 0 hoặc y - 1 = 0
=> x = 1 hoặc y = 1
Vậy x; y là số tự nhiên thỏa mãn x = 1 hoặc y = 1
b) => (xy - 2x) - (y - 2) = 0
=> x(y - 2) - 1. (y - 2) = 0
=> (x - 1) .(y - 2) = 0 => x - 1 = 0 hoặc y- 2 = 0
=> x = 1 hoặc y = 2
Vậy x; y là số tự nhiên thỏa mãn x =1 hoặc y = 2
c) => (x .y - x) - (y - 1) = 3
=> x. (y - 1) - (y - 1) = 3
=> (x - 1).(y - 1) = 3
=> x - 1 \(\in\) Ư(3) = {1;3}
x -1 = 1 => x= 2 => y - 1 = 3 => y = 4
x - 1 = 3 => x = 4 => y - 1 = 1 => y = 1
Vậy (x; y) = (2;4) ; (4;1)
\(x.y+x+y=36\)
\(x\left(y+1\right)+y=36\)
\(x\left(y+1\right)+\left(y+1\right)=36+1\)
\(\left(y+1\right)\left(x+1\right)=37\)
\(\left(y+1\right)\left(x+1\right)\) có 4 cặp: \(y+1=1;x+1=37\)
\(y+1=37;x+1=1\)
\(y+1=-1;x+1=-37\)
\(y+1=-37;x+1=-1\)
\(x;y\) có 4 cặp: \(y=0;x=36\)
\(y=36;x=0\)
\(y=-2;x=-38\)
\(y=-38;x=-2\)
Từ x + y = x.y = x : y
=> x.y = x : y
=> \(xy-\frac{x}{y}=0\Rightarrow x\left(y-\frac{1}{y}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\y-\frac{1}{y}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{1}{y}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\pm1\end{cases}}\)
Nếu x = 0
Khi đó x + y = xy
=> 0 + y = 0.y
=> y = 0 (loại)
Nếu y = 1
=> x + y = xy
<=> x + 1 = x
=> 0x = -1 (loại)
Nếu y = - 1
=> x + y = xy
<=> x - 1 = -x
=> 2x = 1
=> x = 0,5 (tm)
Vậy x = 0,5 ; y = -1
\(x\cdot y=\frac{x}{y}\)
\(y\cdot y=\frac{x}{x}\)
\(y^2=1\)
\(y=\pm\sqrt{1}=\pm1\)
\(x+y=x\cdot y\)
TH1 : thế y = 1
\(x+1=x\cdot1\)
\(x+1=x\)
\(x-x=-1\)
\(0x=-1\left(sai\right)\)
Suy ra vô nghiệm x
TH 2 : Thế y = -1
\(x-1=x\cdot\left(-1\right)\)
\(x-1=-x\)
\(x+x=1\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\) ; y = -1
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
từ x - y = xy \(\Rightarrow\)x = xy + y = y . ( x + 1 )
\(\Rightarrow\)x : y = x + 1 ( do y \(\ne\)0 )
Theo đề ra : x : y = x - y ; suy ra x + 1 = x - y \(\Rightarrow\)y = -1
Thay y = -1 vào x - y = xy được : x - ( -1 ) = x . (-1) \(\Rightarrow\)2x = -1 \(\Rightarrow\)x = \(\frac{-1}{2}\)
Vậy ...
1.a.
\(\left(x+3\right)\left(x-2\right)< 0\)
\(TH1:\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}\)
\(TH2:\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}}}\)
không biết có đúng không nữa!
bai toan nay kho
12
36
ủng hộ mk