Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : (y - 4)(1 + 2x) = 6 = 1 . 6 = 6. 1 = 2 . 3 = 3 .2
=> Ta có bảng giá trị :
y - 4 | 1 | 6 | 2 | 3 |
y | 5 | 10 | 6 | 7 |
1 + 2x | 6 | 1 | 3 | 2 |
x | 2,5 | 0 | 1 | 0,5 |
Vậy y = 10 thì x= 0 ; y = 6 thì x = 1
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
Giải
Ta có: \(\left(2x+1\right)\left(y^2-5\right)=12\)
\(\Leftrightarrow\hept{\begin{cases}2x+1\\y^2-5\end{cases}}\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm4;\pm6;\pm3;\pm12\right\}\)
Lập bảng:
\(2x+1\) | \(-1\) | \(-2\) | \(-3\) | \(-4\) | \(-6\) | \(-12\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(y^2-5\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(12\) | \(6\) | \(4\) | \(3\) | \(2\) | \(1\) |
\(x\) | \(-1\) | Loại | \(-2\) | Loại | \(1\) | |||||||
\(y\) | Loại | Loại | Loại | Loại | Loại | Loại | Loại | Loại | \(3\) | Loại | Loại | Loại |
Vậy x =1 và y = 3
\(\left(2x+1\right)\cdot\left(y-5\right)=12\)
<=>\(x=\frac{17-y}{2y-10}\)
thay x vào phương trình
=>\(\left(\frac{17-y+y-5}{y-5}\right)\cdot\left(y-5\right)=12\)
<=>\(\frac{12}{y-5}\cdot\left(y-5\right)=12\)
<=>\(12=12\)(Luôn đúng khi và chỉ khi y khác 5 )\(y\ne5,y\inℝ\)
giả sử thay y=1 ta có
=>\(2x=\frac{12}{1-5}-1\)
<=>\(2x=-4\)
=>\(x=-2\)
Vậy \(x=-2\)và \(y=1\)
2.
\(\frac{2}{2x+1}=\frac{y}{4}\)
\(\Rightarrow y.\left(2x+1\right)=2.4=8\)
\(\Rightarrow y;2x+1\inƯ\left(8\right)\)
Mà 2x + 1 là số lẻ \(\Rightarrow2x+1\in\left\{-1;1\right\}\)
Ta có bảng:
2x+1 | -1 | 1 |
y | -8 | 8 |
x | -1 | 0 |
(y - 4)(1 + 2x) = 6 = 1.6 = 6.1 = 2.3 = 3.2
Ta có 4 trường hợp
\(\left(1\right)\hept{\begin{cases}y-4=1\\1+2x=6\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=\frac{5}{2}\notin N\end{cases}}}\)(loại)
\(\left(2\right)\hept{\begin{cases}y-4=6\\1+2x=1\end{cases}\Rightarrow\hept{\begin{cases}x=10\\x=0\end{cases}}}\)(nhận)
\(\left(3\right)\hept{\begin{cases}y-4=2\\1+2x=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=1\end{cases}}}\)(nhận)
\(\left(4\right)\hept{\begin{cases}y-4=3\\1+2x=2\end{cases}\Rightarrow\hept{\begin{cases}y=7\\x=\frac{1}{2}\notin N\end{cases}}}\)(Loại )
( y - 4 ) . ( 1 + 2x ) = 6
Phân tích 6 thành tích của hai số tự nhiên :
6 = 6 . 1
6 = 2 . 3
( và cả biểu thức đổi ngược ) .
Tổng cộng có 3 trường hợp ( loại trường hợp 3 . 2 )
1 :
y - 4 = 6
=> y = 6 + 4 = 10
1 + 2x = 1
=> 2x = 0 => x = 0
2 :
y - 4 = 2
=> y = 2 + 4 = 6
1 + 2x = 3
=> 2x = 3 - 1 = 2 => x = 1
3 : Tương tự ( 1 . 6 )