Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
(x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...
1.tìm các số nguyên x và y sao cho:
(x-3).(2y+1)=7
Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên
=>x-3 ; 2y+1 C Ư(7)
ta có bảng:
x-3 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 3 | 0 | -4 | -1 |
Vậy..............................................................................
2.tìm các số nguyên x và y sao cho:
xy+3x-2y=11
x.(y+3)-2y=11
x.(y+3)-y=11
x.(y+3)-(y+3)=11
(x-1)(y+3)=11
Vì x;y là số nguyên => x-1;y+3 là số nguyên
=> x-1;y+3 Thuộc Ư(11)
Ta có bảng:
x-1 | 1 | 11 | -1 | -11 |
y+3 | 11 | 1 | -11 | -1 |
x | 2 | 12 | 0 | -10 |
y | 8 | -2 | -14 | -4 |
Vậy.......................................................................................
xy-2x= 15
x. ( y-2)= 15
=> x THUỘC Ư (15)= { 1;3;5;15}
x | 1 | 3 | 5 | 15 |
y-2 | 15 | 5 | 3 | 1 |
y | 17 | 7 | 5 | 3 |
VẬY CÁC CẶP SỐ (X;Y) là: (1;17); (3;7); (15;3); (5;5)
\(\left(x+2\right)\left(y-1\right)=3\)
Vì x,y nguyên => x+2; y-1 nguyên
=> x+2; y-1 \(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
x+2 | -3 | -1 | 1 | 3 |
y-1 | -1 | -3 | 3 | 1 |
x | -5 | -3 | -1 | 1 |
y | 0 | -2 | 4 | 2 |
a) \(\left(x+2\right)\left(y-1\right)=3\)
Do đó \(\left(\left[x+2\right],\left[y-1\right]\right)\)là các hoán vị của \(\left(\pm1;\pm3\right)\)
Xét TH ([x+2],[y-1])=(1,3)
x+2 = 1 => x= -1
y-1 = 3 => y = 4
Tương tự với các TH còn lại nhé bạn,phương pháp là bạn phân tích thừa số nguyên tố ra rồi tính
\(\left(x+y\right)\left(x-y\right)=7\)
Vì \(x+y+x-y=2x\) chẵn
⇒ \(\left[{}\begin{matrix}x+y\text{⋮}2\\x-y\text{⋮}2\end{matrix}\right.\)
⇒ \(\left(x+y\right)\left(x-y\right)\text{⋮}4\)
mà 7 không chia hết cho 4
⇒ Không tồn tại x,y
a) Vì 7 = 1.7 mà x+y > x-y
=> x+y = 7 và x-y = 1
Bạn đưa về bài toán tổng hiệu nhé!
b) x2 + y + x + xy = 11
x2 + xy + y + x = 11
x(x+y) + (y + x) = 11
(x + y) . ( x+1) = 11
Vì 11 = 1.11
=> x+y = 1 và x+1=11 hoặc x+y=11 và x+1=1
+) Với x+1 = 11 => x=10
Mà x+y = 1 => x+y=1 và x+1=11 ( vô lí)
+) Với x+1 = 1 => x=0
Mà x+y=11 => y= 11-0=11 ( thỏa mãn)
Vậy x=0 và y=11
x−3=y.(x+2)
⇒(x+2)−5=y.(x+2)
⇒(x+2)−5−y.(x+2)=0
⇒(x+2).(1−y)=5
\(x-3=y.\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)-5=y.\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)-5-y.\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right).\left(1-y\right)=5\)
Kẻ bảng tìm tipees ok
x-3=xy+2y
x+2-5=y.(x+2)
(x+2)-y(x+2)=5
(x+2).(1-y)=5
=>\(x+2;1-y\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left(\pm1;\pm5\right)\)