K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

mk cho bài kham khảo nha :

a, (2n+7)/(n+1)=(2(n+1)+5)/(n+1)=2+5/(n+1) 
Để (2n+7) chia hết (n+1) thì 5 chia hết cho n+1 hay n+1 là ước của 5 
=>n+1 € {-5, -1 ,1, 5} 
=>n € {-6,-2, 0,4} 
Do n là STN=> n €{0,4} 
b , n+2 chia hết cho (7-n) =>(n+2)(2-n) chia hết cho (7-n) 
hay 4-n^2 chia hết cho 7-n => (4-n^2)/(7-n)=(49-n^2-45)/(7-n) 
=>((7-n)(7+n)-45)/(7-n)=(7+n)-45/(7-n) 
(n+2) chia hết (7-n) thì 45 chia hết cho (7-n) 
=>7-n € {-45 ,-9, -5,-3,-15,-1,1,3,9,15,45} 
=>n € {52,16,12,20,8,6,4,-2,-8,-38} 
Do n là STN => n €{4,6,8,12,16,20,52}

:D

2 tháng 9 2021

 Ko biết Anh gì ơi

18 tháng 7 2015

  Gọi số cần tìm là a, thương lần lượt khi chia cho 5 và 7 là x,y  ta có:

   a = 5x+1  ; a=7y+1

=> a-1 = 5x   ; a-1 = 7y

Vậy a-1 thuộc BC(5;7)

BCNN(5;7) = 35

=> BC(5;7) = 0;35;70;105;140;....;980;1015;1050;....

Vì a là số tự nhiên nhỏ nhất có 4 chữ số nên a-1 = 1015

=> a = 1016

23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

3 tháng 1 2016

2.  (x+10).(y+2)=1

tự tính

26 tháng 6 2016

a)4x-3 chia hết cho x-2

4x-8+5 chia hết cho x-2

(4x-8)+5 chia hết cho x-2

4(x-2)+5 chia hết cho x-2 <=> 5 chia hết cho x-2 [vì 4(x-2) luôn chia hết cho x-2]

 x-2 E {1;-1;5;-5}

Nếu x-2=1          Nếu x-2=-1            Nếu x-2=5          Nếu x-2=-5

       x=1+2=3            x=-1+2=1             x=5+2=7             x=-5+2=-3