K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

Vì \(n+8\) và \(n+1\) là 2 SCP

nên đặt \(\left\{{}\begin{matrix}n+8=x^2\\n+1=y^2\end{matrix}\right.\) ;\(a;b\in N\) (1)

Trừ từng vế ta được:

\(x^2-y^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=7\)

Vì \(x;y\in N\) nên \(x-y< x+y\)

\(\rightarrow\left\{{}\begin{matrix}x-y=1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Thế vào (1) ta được:\(\left\{{}\begin{matrix}n+8=4^2\\n+1=3^2\end{matrix}\right.\)

                                  \(\Leftrightarrow\left\{{}\begin{matrix}n=8\\n=8\end{matrix}\right.\)

Vậy \(n=8\) thì \(n+8;n+1\) là 2 SCP

 

4 tháng 1 2016

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

4 tháng 1 2016

ok pạn Phạm thế mạnh

19 tháng 10 2019

n^2+23=x^2 <=>23 = x^2-n^2=(x-n)(x+n). Đến đây bạn lập bảng xét gtri là dc nhé

24 tháng 6 2020

Vì   \(7^n+147\) là số chính phương 

=> Đặt: \(7^n+147\)  với a là số nguyên khi đó ta có: 

\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương

mà: n là số tự nhiên  nên \(7^n⋮7\)\(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)

=> \(7^n⋮7^2\)=> n \(\ge\)2

+) Với n = 2k khi đó: \(k\ge1\)

Ta có: \(7^{2k}+147=a^2\)

<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)

Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)

Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2 

Thử lại thỏa mãn

+) Với n = 2k + 1  ta có: 

\(7^{2k+1}:4\) dư -1

\(147\): 4 dư  3

=> \(7^{2k+1}+147\) chia 4 dư 2 

mà số chính phương chia 4 bằng 0 hoặc 1 

=> Loại 

Vậy: n = 2

30 tháng 8 2021

Đặt \(a^2=n^2-n+2\left(a\in Z\right)\)

\(\Rightarrow4a^2=4n^2-4n+8\)

\(\Leftrightarrow4a^2=\left(2n-1\right)^2+9\)

\(\Leftrightarrow4a^2-\left(2n-1\right)^2=9\)

\(\Leftrightarrow\left(2a-2n+1\right)\left(2a+2n-1\right)=9\)

Phương trình ước số cơ bản.

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.