K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

3b/ giải ch ra :(

4/ ko hiểu đề + lười

5/

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

a/ Vì M là tđ AC => OM vuông góc vs AC => ^OMC = 90o

Vì N là tđ BC => ON vuông vs BC => ^ONC = 90o

=> ^OMC = ^ONC = 90o

Mà 2 góc này cùng chắn cung OC

=> tứ giac OCMN nội tiếp

LẠi có : AB = AC (gt) => sđ cung AB = sđ cung AC => ^CDA = ^ADB ( hệ quả góc nội tiếp ) => ^CDB = 2.^CDA

cmtt => ^CDM=^MDA (...) => ^CDA = 2.^MDC

=> ^CDB = 4.^MDC (đpcm)

b,c / ...

11 tháng 7 2020

Lời giải bài hình của mình:

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

a) +) \(\widehat{ONC}=\widehat{OMC}=90^0\) nên ONMC nội tiếp.

+) \(\widehat{BDC}=2\widehat{ADC}=4\widehat{ODC}\)

b) \(\widehat{PAC}=\frac{1}{2}sđ\stackrel\frown{DC}=\frac{1}{2}sđ\stackrel\frown{DA}=\frac{1}{2}sđ\stackrel\frown{DB}+\frac{1}{2}sđ\stackrel\frown{AB}=\frac{1}{2}sđ\stackrel\frown{DB}+\frac{1}{2}sđ\stackrel\frown{AC}=\widehat{APC}\)

Do đó \(\Delta APC\) cân tại \(C\) \(\Rightarrow CA=CP\)

Từ câu a) suy ra \(\widehat{ADM}=\widehat{EDA}\left(=\frac{1}{8}sđ\stackrel\frown{BC}\right)\)

Tứ giác \(DEMC\) nội tiếp \(\Rightarrow\widehat{BEF}=\widehat{MEC}=\widehat{MDC}=\widehat{BDE}\)

\(\widehat{BDE}+\widehat{EBD}=90^0\Rightarrow EF\perp BD\)

c) \(MN\) là đường trung bình của \(\Delta ABC\Rightarrow MN\text{//}AF\Rightarrow\widehat{EMN}=\widehat{AFE}=\widehat{BEF}=\widehat{MEN}\)

\(\Rightarrow\Delta MNE\) cân tại \(N\)

Ta có: \(\left\{{}\begin{matrix}\widehat{BFD}=\widehat{BED}=90^0\\\widehat{FDB}=\widehat{EDB}\end{matrix}\right.\)

\(\Rightarrow\Delta BFD=\Delta BED\left(ch-gn\right)\Rightarrow DE=DF\Rightarrow\frac{DE}{DF}=1\)

10 tháng 7 2020

Nguyễn Trần Thành Đạt cá nhân em thấy đề này khá dễ, cũng không có câu phân loại :( Hơi buồn...

11 tháng 7 2020

Nguyễn Trần Thành Đạt vừa làm vừa viết =))

Trần Thanh Phương chắc họ tinh giảm. Câu hình cuối cx dễ luôn.

Thay y=0 và x=-2 vào (d), ta được:

-2(3m-1)+2m-4=0

=>-6m+2+2m-4=0

=>-4m-2=0

hay m=-1/2

15 tháng 5 2022

Cắt nhau trên trục hoành `=>y=0`

Thay `y=0` vào `y=3x+6` có: `0=3x+6=>x=-2`

Thay `x=-2;y=0` vào `y=(3m-1)x+2m-4` có:

     `0=(3m-1).(-2)+2m-4`

`<=>-6m+2+2m-4=0`

`<=>-4m=2`

`<=>m=-1/2`

3 tháng 8 2020

Ta có : \(Q=\frac{x^6-3x^5+3x^4-x^3+2020}{x^6-x^3-3x^2-3x+2020}\)

=> \(Q=\frac{\left(x^6-x^5-x^4\right)+\left(-2x^5+2x^4+2x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(-x^3+x^2+x\right)+\left(x^2-x-1\right)+2021}{\left(x^6-x^5-x^4\right)+\left(x^5-x^4-x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(2x^3-2x^2-2x\right)+\left(x^2-x-1\right)+2021}\)

=> \(Q=\frac{x^4\left(x^2-x-1\right)-2x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}{x^4\left(x^2-x-1\right)+x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}\)

=> \(Q=\frac{x^4.0-2x^3.0+2x^2.0-x.0+0+2021}{x^4.0+x^3.0+2x^2.0+0+2021}\)

=> \(Q=\frac{2021}{2021}=1\)

Để M xác định

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6-3x}\ge0\\\sqrt[3]{x^2-3x}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6-3x\ge0\\x\left(x-3\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\\x\ne3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\end{matrix}\right.\)

Vậy.....

29 tháng 10 2021

\(a,ĐK:\dfrac{-5}{x^2+6}\ge0\Leftrightarrow x\in\varnothing\)

( Do \(-5< 0;x^2+6>0\Leftrightarrow\dfrac{-5}{x^2+6}< 0,\forall x\))

\(b,ĐK:\dfrac{3x-2}{\left(x-1\right)^2+3}\ge0\\ \Leftrightarrow3x-2\ge0\left[\left(x-1\right)^2+3>0\right]\\ \Leftrightarrow x\ge\dfrac{2}{3}\)

29 tháng 10 2021

a) ĐKXĐ: \(x^2+6< 0\left(VLý.do.x^2+6\ge6>0\right)\)

Vậy biểu thức k xác định với mọi x

b)  \(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-1\right)^2+3}}\)

ĐKXĐ: \(\left\{{}\begin{matrix}3x-2\ge0\\\left(x-1\right)^2+3\ne0\left(đúng\forall x\right)\end{matrix}\right.\)

\(\Leftrightarrow x\ge\dfrac{2}{3}\)

20 tháng 2 2023

\(a,\sqrt{2x-5}\)

Biểu thức trên xác định \(\Leftrightarrow2x-5\ge0\)

\(\Leftrightarrow2x\ge5\)

\(\Leftrightarrow x\ge\dfrac{5}{2}\)

\(b,\sqrt{3x+1}\)

Biểu thức trên xác định \(\Leftrightarrow3x+1\ge0\)

\(\Leftrightarrow3x\ge-1\)

\(\Leftrightarrow x\ge-\dfrac{1}{3}\)

\(c,\dfrac{2}{x+2}\)

Biểu thức trên xác định \(\Leftrightarrow x+2\ne0\)

\(\Leftrightarrow x\ne-2\)