K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 4 2020

\(4x^2+4y^2+4z^2-4xy-12y-8z+12< 0\)

\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2< 4-4\left(z-1\right)^2\)

Do \(\left(2x-y\right)^2+3\left(y-2\right)^2\Rightarrow4-4\left(z-1\right)^2>0\)

\(\Rightarrow\left(z-1\right)^2< 1\Rightarrow z-1=0\Rightarrow z=1\)

\(\Rightarrow\left(2x-y\right)^2< 3-3\left(y-2\right)^2\)

Tương tự ta có \(3-3\left(y-2\right)^2>0\Rightarrow y-2=0\Rightarrow y=2\)

\(\left(2x-2\right)^2< 3\Rightarrow\left(x-1\right)^2< \frac{3}{4}\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

18 tháng 2 2022

+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7 

+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau: 

Không mất tính tổng quát: g/s: 

x ≥ y ≥ z

Vì x2 + y2 + z2 = 14 => 

x 2 ≤ 14

⇒ x ≤ √ 14 < 4

  Vì x nguyên dương 

=> x  ∈ { 1; 2; 3}

+)Vớix=3=>\hept{y+z=3y2+z2=5⇒\hept{y+z=y2≤5

21 tháng 1 2017

x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

\(\Leftrightarrow\)(x2 - xy +\(\frac{y^2}{4}\)) + (\(\frac{3y^2}{4}\) - 3y + 3) + (z2 - 2z + 1) = 0

\(\Leftrightarrow\)(x -\(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0

\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)

30 tháng 12 2016

mk k bt lm. Mk ms hk lp 8...

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

Nhân $4$ vào cả hai vế, phương trình trở thành:

\(4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow (2x-y)^2+3(y-2)^2+(2z-2)^2=0\)

\((2x-y)^2, (y-2)^2,(2z-2)^2\geq 0\forall x,y,z\in\mathbb{Z}\) nên

\((2x-y)^2+3(y-2)^2+(2z-2)^2\geq 0\)

Dấu $=$ xảy ra khi \(\left\{\begin{matrix} 2x-y=0\\ y-2=0\\ 2z-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\\ z=1\end{matrix}\right.\)

Vậy \((x,y,z)=(1,2,1)\) là nghiệm của HPT

13 tháng 4 2019

Phương trình  1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y

Trường hợp 1:  x = - y  thay vào (2) ta được  x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3

Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).

Trường hợp 2:  2 x = y  thay vào (2) ta được  - 5 x 2 + 17 x + 3 = 0  phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).

Đáp án cần chọn là: C

26 tháng 2 2021

Từ x + y  = 2 => x = 2 - y thay vào xy - z2 = 1

Ta có: \(\left(2-y\right)y-z^2=1\)

<=> \(z^2+y^2-2y+1=0\)

<=> \(z ^2+\left(y-1\right)^2=0\)

<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1

Vậy x = y = 1 và z = 0

13 tháng 12 2020

a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)

TH1: \(x=y\)

Phương trình \(\left(1\right)\) tương đương:

\(x^2=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)

TH2: \(x=4-y\)

Phương trình \(\left(2\right)\) tương đương:

\(y^2=4y-4\)

\(\Leftrightarrow y^2-4y+4=0\)

\(\Leftrightarrow\left(y-2\right)^2=0\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2\)

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

21 tháng 6 2021

Má mày giúp tao bài tao gửi đii:(

DD
21 tháng 6 2021

Ta có bất đẳng thức: với \(x,y>0\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dấu \(=\)khi \(x=y\).

Áp dụng bất đẳng thức trên ta được: 

\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)

\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)

Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được: 

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc )