\(\left(x+y\right)^2=\left(x-1\right).\left(y+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học

12 tháng 12 2015

x(x+y)=-45 (1)

y(x+y)=5   (2)

cộng (1) với (2),vế theo vế ta đc:

x(x+y)+y(x+y)=-45+5=-40

=>(x+y)^2=-40

vì (x+y)^2>0;-40<0

=>ko tìm đc cặp (x;y) thỏa mãn

=>số cặp (x;y) thỏa mãn là 0

tik nhé

DD
1 tháng 3 2021

a) Chỉ là thay số nên bạn tự làm nhé. 

b) \(y_1=1\)\(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\)\(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.

Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\)\(k\)chẵn thì \(y_k=0\)(1).

Khi đó ta có: 

\(A=y_1+y_2+...+y_{2021}\)

\(A=1+0+1+...+1\)

\(A=\frac{2021-1}{2}+1=1011\)

27 tháng 1 2019

Ta có : \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|\ge4\left(1\right)\)

Ta lại có : \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{1}{\left|y+1\right|+3}\le\frac{1}{3}\)hay \(\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\left(2\right)\)

Theo đề ra ta có : \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\left(3\right)\)

Từ (1) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi : 

\(\left(x-5\right)\left(1-x\right)=0\Leftrightarrow1\le x\le5\)

Từ (2) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :

\(\frac{12}{\left|y+1\right|+3}=4\Leftrightarrow\left|y+1\right|+3=3\)

\(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Vậy : \(x\in\left\{1;2;3;4;5\right\};y=\left(-1\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|3x+1|+|3x-5|=|3x+1|+|5-3x|\geq |3x+1+5-3x|=6$

$(y+3)^2+2\geq 2, \forall y\Rightarrow \frac{12}{(y+3)^2+2}\leq \frac{12}{2}=6$

Vậy:

$|3x+1|+|3x-5|\geq 6\geq \frac{12}{(y+3)^2+2}$
Dấu "=" xảy ra (3x+1)(5-3x)\geq 0$ và $y+3=0$

$\Leftrightarrow \frac{-1}{3}\leq x\leq \frac{5}{3}$ và $y=-3$